Linear functional equations, differential operators and spectral synthesis

被引:0
作者
G. Kiss
M. Laczkovich
机构
[1] Budapest University of Technology and Economics,Department of Stochastics, Faculty of Natural Sciences
[2] MTA-BME Stochastics Research Group (04118),Department of Analysis
[3] Eötvös Loránd University,Department of Mathematics
[4] University College London,undefined
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
Primary 43A45; 43A70; Secondary 13F20; Linear functional equations; Spectral synthesis; Polynomial–exponential functions;
D O I
暂无
中图分类号
学科分类号
摘要
Our aim is to describe the solutions of the functional equation ∑i=1naif(bix+ciy)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum^{n}_{i=1} a_if(b_ix + c_iy) =0}$$\end{document}, where ai,bi,ci∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a_i,b_i,c_i \in \mathbb{C}}$$\end{document}, and the unknown function f is defined on the field K=Q(b1,…,bn,c1.…,cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${K = \mathbb{Q} (b_1,\ldots, b_n, c_1.\ldots,c_n )}$$\end{document}. Since the set of solutions constitutes a variety on the discrete multiplicative group K* of the field K, our approach is to apply spectral synthesis on K* and on its powers. We prove that spectral synthesis holds in every variety on K* which consists of functions additive on K with respect to addition. As an application we show that the set S1 of additive solutions of the equation is spanned by S1∩D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_1 \cap \mathcal{D}}$$\end{document}, where D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document} is the set of functions ϕ∘D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi \circ D}$$\end{document}, where ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} is a field automorphism of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} and D is a differential operator on K. We prove that if V is a variety on the Abelian group (K*)k under multiplication, and every function F∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F \in V}$$\end{document} is k-additive on Kk with respect to addition, then spectral synthesis holds in V. From this we infer that, under some mild conditions on the equation, the set S of all solutions is spanned by S∩A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S\cap \mathcal{A}}$$\end{document}, where A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{A}}$$\end{document} is the algebra generated by D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{D}}$$\end{document}. This implies that if S is translation invariant with respect to addition, then spectral synthesis holds in S considered as a variety on the additive group of K. We give several applications, and describe the set of solutions of equations having some special properties (e.g. having algebraic coefficients etc.).
引用
收藏
页码:301 / 328
页数:27
相关论文
共 11 条
  • [1] Baker J.A.(2004)A general functional equation and its stability Proc. Am. Math. Soc. 133 1657-1664
  • [2] Daróczy Z.(1961)Notwendige und hinreichende Bedingungen für die Existenz von nightkonstanten Lösungen linearer Functionalgleichungen Acta Sci. Math. (Szeged) 22 31-41
  • [3] Laczkovich M.(2004)Polynomial mappings on Abelian groups Aequationes Math. 68 177-199
  • [4] Laczkovich M.(2007)Spectral synthesis on discrete Abelian groups Math. Proc. Camb. Philos. Soc. 143 103-120
  • [5] Székelyhidi L.(1982)On a class of linear functional equations Publ. Math. (Debrecen) 29 19-28
  • [6] Székelyhidi L.(2004)The failure of spectral synthesis on some types of discrete Abelian groups J. Math. Anal. Appl. 291 757-763
  • [7] Székelyhidi L.(2008)On a functional equation containing four weighted arithmetic means Banach J. Math. Anal. 2 21-32
  • [8] Varga A.(2010)On additive solutions of a linear equation Acta Math. Hung. 128 15-25
  • [9] Varga A.(2009)On Daróczys problem for additive functions Publ. Math. Debr. 75 299-310
  • [10] Varga A.(undefined)undefined undefined undefined undefined-undefined