A Systematic Study on Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

被引:0
|
作者
Junping Wang
Ruishu Wang
Qilong Zhai
Ran Zhang
机构
[1] National Science Foundation,Division of Mathematical Sciences
[2] Jilin University,School of Mathematics
来源
Journal of Scientific Computing | 2018年 / 74卷
关键词
Weak Galerkin finite element method; Second-order elliptic equation; Error estimate; Stability analysis; 65N30; 65N15; 65M60; 65M15; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
This article provides a systematic study for the weak Galerkin (WG) finite element method for second order elliptic problems by exploring polynomial approximations with various degrees for each local element. A typical local WG element is of the form Pk(T)×Pj(∂T)‖Pℓ(T)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k(T)\times P_j(\partial T)\Vert P_\ell (T)^2$$\end{document}, where k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document} is the degree of polynomials in the interior of the element T, j≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\ge 0$$\end{document} is the degree of polynomials on the boundary of T, and ℓ≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 0$$\end{document} is the degree of polynomials employed in the computation of weak gradients or weak first order partial derivatives. A general framework of stability and error estimate is developed for the corresponding numerical solutions. Numerical results are presented to confirm the theoretical results. The work reveals some previously undiscovered strengths of the WG method for second order elliptic problems, and the results are expected to be generalizable to other type of partial differential equations.
引用
收藏
页码:1369 / 1396
页数:27
相关论文
共 50 条