Regional Optimal Control Problem for the Vibrating Plate

被引:0
作者
Zerrik E. [1 ]
Aadi A.A. [1 ]
Larhrissi R. [1 ]
机构
[1] University of Moulay Ismail, Meknes
关键词
93C20; 93D15; distributed bilinear system; optimal control; plate equation; regional controllability;
D O I
10.1007/s10958-023-06736-z
中图分类号
学科分类号
摘要
In this paper, we examine the problem on the regional optimal control of a vibrating plate in a spatial domain Ω. We obtain a bounded control that drives such a system from an initial state to a desired state in a finite time, only on a subdomain ω of Ω. We prove that a regional optimal control exists characterize this control. Also we propose a condition that ensures the uniqueness of an optimal control and develop an algorithm for numerical simulations. © 2023, Springer Nature Switzerland AG.
引用
收藏
页码:216 / 226
页数:10
相关论文
共 14 条
[1]  
Addou A., Benbrik A., Existence and uniqueness of optimal control for a distributed parameter bilinear systems, J. Dynam. Control Syst., 8, pp. 141-152, (2002)
[2]  
Ball J.M., Marsden J.E., Slemrod M., Controllability for distributed bilinear systems, SIAM J. Control Optim., 20, pp. 575-597, (1982)
[3]  
Bradley M.E., Lenhart S., Bilinear optimal control of a Kirchhoff plate, Syst. Control Lett., 22, pp. 27-38, (1994)
[4]  
Bradley M.E., Lenhart S., Bilinear spatial control of the velocity term in a Kirchhoff plate, Electron. J. Differ. Equations., 2001, (2001)
[5]  
Bradley M.E., Lenhart S., Yong J., Bilinear optimal control of the velocity term in a Kirchhoff plate equation, J. Math. Anal. Appl., 238, pp. 451-467, (1999)
[6]  
El Jai A., Simon M.C., Zerrik E., Prirchard A.J., Regional controllability of distributed parameter systems, Int. J. Control., 62, pp. 1351-1365, (1995)
[7]  
Joshi H.R., Optimal control of the convective velocity coefficient in a parabolic problem, Nonlin. Anal. Theory Methods Appl., 63, pp. 1383-1390, (2005)
[8]  
Lenhart S., Optimal control of a convective-diffusive fluid problem, J. Math. Models Meth. Appl. Sci., 5, pp. 225-237, (1995)
[9]  
Liang M., Bilinear optimal control for a wave equation, J. Math. Models Meth. Appl. Sci., 9, pp. 45-68, (1999)
[10]  
Lions J.L., Contrȏlabilité exacte, perturbations et stabilisation de systèmes distribués, (1988)