A machine learning approach to Bayesian parameter estimation

被引:0
|
作者
Samuel Nolan
Augusto Smerzi
Luca Pezzè
机构
[1] INO-CNR and LENS,QSTAR
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Bayesian estimation is a powerful theoretical paradigm for the operation of the approach to parameter estimation. However, the Bayesian method for statistical inference generally suffers from demanding calibration requirements that have so far restricted its use to systems that can be explicitly modeled. In this theoretical study, we formulate parameter estimation as a classification task and use artificial neural networks to efficiently perform Bayesian estimation. We show that the network’s posterior distribution is centered at the true (unknown) value of the parameter within an uncertainty given by the inverse Fisher information, representing the ultimate sensitivity limit for the given apparatus. When only a limited number of calibration measurements are available, our machine-learning-based procedure outperforms standard calibration methods. Our machine-learning-based procedure is model independent, and is thus well suited to “black-box sensors”, which lack simple explicit fitting models. Thus, our work paves the way for Bayesian quantum sensors that can take advantage of complex nonclassical quantum states and/or adaptive protocols. These capabilities can significantly enhance the sensitivity of future devices.
引用
收藏
相关论文
共 50 条
  • [1] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [2] Machine learning for parameter estimation
    Kutz, J. Nathan
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2023, 120 (12)
  • [3] Fast Bayesian approach for parameter estimation
    Jin, Bangti
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (02) : 230 - 252
  • [4] Active learning for parameter estimation in Bayesian networks
    Tong, S
    Koller, D
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 647 - 653
  • [5] Precision Parameter Estimation and Machine Learning
    Wandelt, Benjamin D.
    CLASSIFICATION AND DISCOVERY IN LARGE ASTRONOMICAL SURVEYS, 2008, 1082 : 339 - 344
  • [6] A machine learning oracle for parameter estimation
    Koepke, Lucas
    Gregg, Mary
    Frey, Michael
    STATISTICAL ANALYSIS AND DATA MINING, 2023, 17 (01)
  • [7] Porous Material Parameter Estimation: A Bayesian Approach
    Fackler, Cameron
    Dieckman, Eric
    Xiang, Ning
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 314 - 321
  • [8] Parameter estimation in batch polymerisation (a Bayesian approach)
    Lu, Z
    Martin, E
    Morris, J
    ADVANCES IN PROCESS CONTROL 6, 2001, : 165 - 172
  • [9] A Bayesian Approach for Parameter Estimation in Railway Systems
    Jaoua, Nouha
    Vanheeghe, Philippe
    Navarro, Nicolas
    Langlois, Olivier
    Iordache, Marius
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [10] A MACHINE LEARNING BASED APPROACH TO WEATHER PARAMETER ESTIMATION IN DOPPLER WEATHER RADAR
    Kon, Satoshi
    Tanaka, Toshihisa
    Mizutani, Humihiko
    Wada, Masakazu
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2152 - 2155