Bounded cohomology and non-uniform perfection of mapping class groups

被引:0
|
作者
H. Endo
D. Kotschick
机构
[1] Department of Mathematics,
[2] Tokyo Institute of Technology,undefined
[3] Oh-Okayama,undefined
[4] Meguro 152-8551,undefined
[5] Tokyo,undefined
[6] Japan (e-mail: endo@math.titech.ac.jp),undefined
[7] Mathematisches Institut,undefined
[8] Universität München,undefined
[9] Theresienstr. 39,undefined
[10] 80333 München,undefined
[11] Germany (e-mail: dieter@member.ams.org),undefined
来源
Inventiones mathematicae | 2001年 / 144卷
关键词
Mathematics Subject Classification (2000): 57R17, 57R57, 20F12;
D O I
暂无
中图分类号
学科分类号
摘要
Using the existence of certain symplectic submanifolds in symplectic 4-manifolds, we prove an estimate from above for the number of singular fibers with separating vanishing cycles in minimal Lefschetz fibrations over surfaces of positive genus. This estimate is then used to deduce that mapping class groups are not uniformly perfect, and that the map from their second bounded cohomology to ordinary cohomology is not injective.
引用
收藏
页码:169 / 175
页数:6
相关论文
共 50 条
  • [31] Imprimitive groups synchronizing a transformation of non-uniform kernel
    Wangwei Li
    Xianhua Li
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 816 - 821
  • [32] Design of Filters for a Class of Non-uniform Sampling Systems
    Lin, Hong-Lei
    Ma, Jing
    Sun, Shu-Li
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 1995 - 1999
  • [33] State Estimation for a Class of Non-uniform Sampling Systems
    Lin Honglei
    Sun Shuli
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 2024 - 2027
  • [34] Cohomology of profinite groups of bounded rank
    Symonds, Peter
    TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 8 (01): : 435 - 439
  • [35] Bounded cohomology characterizes hyperbolic groups
    Mineyev, I
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 59 - 73
  • [36] BOUNDED COHOMOLOGY OF CERTAIN GROUPS OF HOMEOMORPHISMS
    MATSUMOTO, S
    MORITA, S
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 94 (03) : 539 - 544
  • [37] FREE GROUPS IN THE SECOND BOUNDED COHOMOLOGY
    Park, HeeSook
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) : 1390 - 1412
  • [38] Straightening and bounded cohomology of hyperbolic groups
    I. Mineyev
    Geometric & Functional Analysis GAFA, 2001, 11 : 807 - 839
  • [39] Straightening and bounded cohomology of hyperbolic groups
    Mineyev, I
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (04) : 807 - 839
  • [40] Polynomially bounded cohomology and discrete groups
    Ogle, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 195 (02) : 173 - 209