On the Automorphisms of a Free Lie Algebra of Rank 3 Over an Integral Domain

被引:0
作者
A. A. Alimbaev
R. Zh. Nauryzbaev
U. U. Umirbaev
机构
[1] U. Sultangazin Kostanai State Pedagogical University,
[2] L. N. Gumilyov Eurasian National University,undefined
[3] Wayne State University,undefined
来源
Siberian Mathematical Journal | 2020年 / 61卷
关键词
free Lie algebra; automorphism; tame automorphism; free product; Euclidean domain;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that the group of tame automorphisms of a free Lie algebra of rank 3 (as well as of a free anticommutative algebra) over an arbitrary integral domain has the structure of an amalgamated free product. We construct an example of a wild automorphism of a free Lie algebra of rank 3 (as well as of a free anticommutative algebra) over an arbitrary Euclidean ring analogous to the Anick automorphism [1] of free associative algebras.
引用
收藏
页码:1 / 10
页数:9
相关论文
共 33 条
[1]  
Umirbaev U U(2007)The Anick automorphism of free associative algebras J. Reine Angew. Math. 605 165-178
[2]  
Jung H W E(1942)Über ganze birationale Transformationen der Ebene J. Reine Angew. Math. 184 161-174
[3]  
Van der Kulk W(1953)On polynomial rings in two variables Nieuw Arch. Wiskd. 1 33-41
[4]  
Shafarevich I R(1966)On some infinite-dimensional groups Rend. Mat. Appl. 25 208-212
[5]  
Wright D(1978)The amalgamated free product structure of J. Pure Appl. Algebra 12 235-251
[6]  
Makar-Limanov L G(1970)( Funct. Anal. Appl. 4 262-264
[7]  
Czerniakiewicz A G(1971)[ Trans. Amer. Math. Soc. 160 393-401
[8]  
Makar-Limanov L(2009),…, J. Algebra 322 3318-3330
[9]  
Turusbekova U(2008)]) Asian-Eur. J. Math. 1 243-254
[10]  
Umirbaev U(2019)Automorphisms of a free algebra with two generators Sib. Èlektron. Mat. Izv. 16 1133-1146