A watershed water quality prediction model based on attention mechanism and Bi-LSTM

被引:0
|
作者
Qiang Zhang
Ruiqi Wang
Ying Qi
Fei Wen
机构
[1] Northwest Normal University,Department of Computer Science and Engineering
[2] Gansu Academy of Eco-Environmental Sciences,undefined
来源
Environmental Science and Pollution Research | 2022年 / 29卷
关键词
Bi-LSTM; Neural networks; Attention mechanism; The time series; Water quality prediction; Hybrid model;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate prediction of water quality contributes to the intelligent management and control of watershed ecology. Water Quality data has time series characteristics, but the existing models only focus on the forward time series when LSTM is introduced and do not consider the effect of the reverse time series on the model. Also did not take into account the different contributions of water quality sequences to the model at different moments. In order to solve this problem, this paper proposes a watershed water quality prediction model called AT-BILSTM. The model mainly contains a Bi-LSTM layer and a temporal attention layer and introduces an attention mechanism after bidirectional feature extraction of water quality time series data to highlight the data series that have a critical impact on the prediction results. The effectiveness of the method was verified with actual datasets from four monitoring stations in Lanzhou section of the Yellow River basin in China. After comparing with the reference model, the results show that the proposed model combines the bidirectional nonlinear mapping capability of Bi-LSTM and the feature weighting feature of the attention mechanism. Taking Fuhe Bridge as an example, compared with the original LSTM model, the RMSE and MAE of the model are reduced to 0.101 and 0.059, respectively, and the R2 is improved to 0.970, which has the best prediction performance among the four cross-sections and can provide a decision basis for the comprehensive water quality management and pollutant control in the basin.
引用
收藏
页码:75664 / 75680
页数:16
相关论文
共 50 条
  • [1] A watershed water quality prediction model based on attention mechanism and Bi-LSTM
    Zhang, Qiang
    Wang, Ruiqi
    Qi, Ying
    Wen, Fei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (50) : 75664 - 75680
  • [2] Bus-Passenger-Flow Prediction Model Based on WPD, Attention Mechanism, and Bi-LSTM
    Pei, Yulong
    Ran, Songmin
    Wang, Wanjiao
    Dong, Chuntong
    SUSTAINABILITY, 2023, 15 (20)
  • [3] An Improved Generating Energy Prediction Method Based on Bi-LSTM and Attention Mechanism
    He, Bo
    Ma, Runze
    Zhang, Wenwei
    Zhu, Jun
    Zhang, Xingyuan
    ELECTRONICS, 2022, 11 (12)
  • [4] Entity Relationship Extraction Based on Bi-LSTM and Attention Mechanism
    Wei, Ming
    Xu, Zhipeng
    Hu, Jiwei
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [5] ABCNet: A comprehensive highway visibility prediction model based on attention, Bi-LSTM and CNN
    Li, Wen
    Yang, Xuekun
    Yuan, Guowu
    Xu, Dan
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (03) : 4397 - 4420
  • [6] Recongnition of Distracted Driving Behavior Based on Improved Bi-LSTM Model and Attention Mechanism
    Wang, Zhanfeng
    Yao, Lisha
    IEEE ACCESS, 2024, 12 : 67711 - 67725
  • [7] A hybrid model based on CNN and Bi-LSTM for urban water demand prediction
    Hu, Piao
    Tong, Jun
    Wang, Jingcheng
    Yang, Yue
    Turci, Luca de Oliveira
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1088 - 1094
  • [8] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Luo, Jiahang
    Zhang, Xu
    APPLIED INTELLIGENCE, 2022, 52 (01) : 1076 - 1091
  • [9] Convolutional neural network based on attention mechanism and Bi-LSTM for bearing remaining life prediction
    Jiahang Luo
    Xu Zhang
    Applied Intelligence, 2022, 52 : 1076 - 1091
  • [10] Research on Fault Diagnosis of Highway Bi-LSTM Based on Attention Mechanism
    Li, Xueyi
    Su, Kaiyu
    He, Qiushi
    Wang, Xiangkai
    Xie, Zhijie
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (02):