Moduli of Framed Parabolic Sheaves

被引:0
作者
Jacques Hurtubise
Lisa Jeffrey
Reyer Sjamaar
机构
[1] McGill University,Department of Mathematics
[2] Université de Montréal,Centre de Recherches Mathématiques
[3] University of Toronto,Department of Mathematics
[4] Cornell University,Department of Mathematics
来源
Annals of Global Analysis and Geometry | 2005年 / 28卷
关键词
parabolic sheaf; vector bundle; Riemann surface;
D O I
暂无
中图分类号
学科分类号
摘要
This paper gives a construction of the moduli space of framed parabolic sheaves on a Riemann surface. This space serves as a universal, master, space for the well known moduli space of parabolic bundles, as well as moduli spaces of vector bundles, which can all be obtained from this space by torus quotients. The construction is given for the structure group SL(N, C), and indeed is adapted to this case. At the end of the paper, an approach is suggested for dealing with the case of arbitrary reductive groups, involving the associated loop group.
引用
收藏
页码:351 / 370
页数:19
相关论文
共 17 条
[1]  
Alekseev A.(1988)Lie group valued moment maps J. Differential Geom. 48 445-495
[2]  
Malkin A.(1982)The Yang–Mills equations over Riemann surfaces Philos. Trans. Roy. Soc. Lond. Ser. A 308 523-615
[3]  
Meinrenken E.(1989)Parabolic vector bundles on curves Ark. Mat. 27 15-22
[4]  
Atiyah M. F.(1989)Moduli of parabolic, Math. Z. 202 161-180
[5]  
Bott R.(2002)-bundles on curves Transform Groups 7 155-184
[6]  
Bhosle U.(2000)Symplectic implosion Canad. J. Math. 52 1235-1268
[7]  
Bhosle U.(1980)Representations with weighted frames and framed parabolic bundles Math. Ann. 248 205-239
[8]  
Ramanathan A.(1975)Moduli of vector bundles on curves with parabolic structure Math. Ann. 213 129-152
[9]  
Guillemin V.(1996)Stable principal bundles on a compact Riemann surface J. Amer. Math. Soc. 9 691-723
[10]  
Jeffrey L.(undefined)Geometric invariant theory and flips undefined undefined undefined-undefined