Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing

被引:0
|
作者
Haiyang Feng
Liang Xu
Yan Wang
Mingjia Tang
Xianwen Zhu
Wei Zhang
Xiaochuan Sun
Shanshan Nie
Everlyne M’mbone Muleke
Liwang Liu
机构
[1] Nanjing Agricultural University,National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture
[2] North Dakota State University,Department of Plant Sciences
来源
关键词
Radish (; L.); Transcriptome sequencing; Lignin biosynthesis; Gene expression; RT-qPCR;
D O I
暂无
中图分类号
学科分类号
摘要
Radish is an important root vegetable crop with high nutritional, economic, and medicinal value. Lignin is an important secondary metabolite possessing a great effect on plant growth and product quality. To date, lignin biosynthesis-related genes have been identified in some important plant species. However, little information on characterization of critical genes involved in plant lignin biosynthesis is available in radish. In this study, a total of 71,148 transcripts sequences were obtained from radish root, of which 66 assembled unigenes and ten candidate genes were identified to be involved in lignin monolignol biosynthesis. Full-length cDNA sequences of seven randomly selected genes were isolated and sequenced from radish root, and the assembled unigenes covered more than 80% of their corresponding cDNA sequences. Moreover, the lignin content gradually accumulated in leaf during the developmental stages, and it increased from pre-cortex to cortex splitting stage, followed by a decrease at thickening stage and then increased at mature stage in root. RT-qPCR analysis revealed that all these genes except RsF5H exhibited relatively low expression level in root at thickening stage. The expression profiles of Rs4CL5, RsCCoAOMT1, and RsCOMT genes were consistent with the changes of root lignin content, implying that these candidate genes may play important roles in lignin formation in radish root. These findings would provide valuable information for identification of lignin biosynthesis-related genes and facilitate dissection of molecular mechanism underlying lignin biosynthesis in radish and other root vegetable crops.
引用
收藏
页码:1151 / 1163
页数:12
相关论文
共 50 条
  • [21] Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing
    Sun, Yuyan
    Qiu, Yang
    Duan, Mengmeng
    Wang, Jinglei
    Zhang, Xiaohui
    Wang, Haiping
    Song, Jiangping
    Li, Xixiang
    MOLECULAR GENETICS AND GENOMICS, 2017, 292 (01) : 215 - 229
  • [22] Candidate genes in red pigment biosynthesis of a red-fleshed radish cultivar (Raphanus sativus L.) as revealed by transcriptome analysis
    Liu, Hong-Fang
    Chen, Fa-Bo
    BIOCHEMICAL SYSTEMATICS AND ECOLOGY, 2019, 86
  • [23] Comparative transcriptome analysis reveals transcriptional regulation of anthocyanin biosynthesis in purple radish (Raphanus sativus L.)
    Liu, Yi
    Wang, Chenchen
    Chen, Haidong
    Dai, Guoqiang
    Cuimu, Qiushi
    Shen, Wenjie
    Gao, Liwei
    Zhu, Bo
    Gao, Changbin
    Chen, Lunlin
    Chen, Daozong
    Zhang, Xueli
    Tan, Chen
    BMC GENOMICS, 2024, 25 (01):
  • [24] De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L.
    Pornpatsorn Lertphadungkit
    Xue Qiao
    Supaart Sirikantaramas
    Veena Satitpatipan
    Min Ye
    Somnuk Bunsupa
    Plant Cell Reports, 2021, 40 : 1845 - 1858
  • [25] De novo transcriptome analysis and identification of candidate genes associated with triterpenoid biosynthesis in Trichosanthes cucumerina L.
    Lertphadungkit, Pornpatsorn
    Qiao, Xue
    Sirikantaramas, Supaart
    Satitpatipan, Veena
    Ye, Min
    Bunsupa, Somnuk
    PLANT CELL REPORTS, 2021, 40 (10) : 1845 - 1858
  • [26] De novo transcriptome sequencing of radish (Raphanus sativusL.) and analysis of major genes involved in glucosinolate metabolism
    Yan Wang
    Yan Pan
    Zhe Liu
    Xianwen Zhu
    Lulu Zhai
    Liang Xu
    Rugang Yu
    Yiqin Gong
    Liwang Liu
    BMC Genomics, 14
  • [27] Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root
    Gancheva, Maria S.
    Dodueva, Irina E.
    Lebedeva, Maria A.
    Tvorogova, Varvara E.
    Tkachenko, Alexandr A.
    Lutova, Ludmila A.
    BMC PLANT BIOLOGY, 2016, 16
  • [28] Metabolic and transcriptome analysis of dark red taproot in radish (Raphanus sativus L.)
    Heng, Shuangping
    Gao, Changbin
    Cui, Mengdi
    Fu, Jing
    Ren, Sujing
    Xin, Kaiyun
    He, Congan
    Wang, Aihua
    Song, Liping
    Tang, Liguang
    Wang, Bincai
    Zhang, Xueli
    PLOS ONE, 2022, 17 (05):
  • [29] Identification and transcript analysis of MATE genes involved in anthocyanin transport in radish (Raphanus sativus L.)
    M'mbone, Muleke Everlyne
    Cheng, Wanwan
    Xu, Liang
    Wang, Yan
    Karanja, Bernard K.
    Zhu, Xianwen
    Cao, Yang
    Liu, Liwang
    SCIENTIA HORTICULTURAE, 2018, 238 : 195 - 203
  • [30] Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root
    Maria S. Gancheva
    Irina E. Dodueva
    Maria A. Lebedeva
    Varvara E. Tvorogova
    Alexandr A. Tkachenko
    Ludmila A. Lutova
    BMC Plant Biology, 16