q-Apostol–Euler Polynomials and q-Alternating Sums

被引:0
作者
Q.-M. Luo
机构
[1] Chongqing Normal University,
来源
Ukrainian Mathematical Journal | 2014年 / 65卷
关键词
Recursive Formula; Euler Number; Bernoulli Number; Bernoulli Polynomial; Euler Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
Basic properties are established and generating functions are obtained for the q -Apostol–Euler polynomials. We define q -alternating sums and obtain q -extensions of some formulas from Integral Transform. Spectr. Funct., 20, 377–391 (2009). We also deduce an explicit relationship between the q -Apostol–Euler polynomials and the q -Hurwitz–Lerch zeta-function.
引用
收藏
页码:1231 / 1246
页数:15
相关论文
共 37 条
[1]  
Apostol TM(1951)On the Lerch zeta-function Pacif. J. Math. 1 161-167
[2]  
Carlitz L(1948) -Bernoulli numbers and polynomials Duke Math. J. 15 987-1000
[3]  
Carlitz L(1954) -Bernoulli and Eulerian numbers Trans. Amer. Math. Soc. 76 332-350
[4]  
Carlitz L(1958)Expansions of Duke Math. J. 25 355-364
[5]  
Cenkci M(2006) -Bernoulli numbers Adv. Stud. Contemp. Math. 12 213-223
[6]  
Can M(2008)Some results on Appl. Math. Lett. 21 706-711
[7]  
Cenkci M(2008) -analogue of the Lerch zeta-function Appl. Math. Comput. 199 723-737
[8]  
Kurt V(2009)On ( Appl. Math. Comput. 215 1185-1208
[9]  
Rim SH(1995), J. Number Theory 52 157-172
[10]  
Simsek Y(2002)) -Bernoulli and Euler numbers Discrete Math. 252 179-187