Hadamard and Fejér–Hadamard inequalities for extended generalized fractional integrals involving special functions

被引:0
作者
Shin Min Kang
Ghulam Farid
Waqas Nazeer
Bushra Tariq
机构
[1] Gyeongsang National University,Department of Mathematics and Research Institute of Natural Science
[2] China Medical University,Center for General Education
[3] COMSATS University,Department of Mathematics
[4] University of Education,Division of Science and Technology
[5] GGPS Kamalpur Alam,undefined
来源
Journal of Inequalities and Applications | / 2018卷
关键词
Convex function; -convex functions; Hadamard inequality; Fejér–Hadamard inequality; Fractional integrals; Extended generalized Mittag-Leffler function; 26A51; 26A33; 33E15; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the Hadamard and the Fejér–Hadamard inequalities for the extended generalized fractional integral operator involving the extended generalized Mittag-Leffler function. The extended generalized Mittag-Leffler function includes many known special functions. We have several such inequalities corresponding to special cases of the extended generalized Mittag-Leffler function. Also there we note the known results that can be obtained.
引用
收藏
相关论文
共 50 条
[1]  
Dragomir S.S.(2002)On some new inequalities of Hermite–Hadamard type for Tamkang J. Math. 33 45-56
[2]  
Mocanu P.T.(1997)-convex functions Stud. Univ. Babeş–Bolyai, Math. 42 65-80
[3]  
Serb I.(2016)Real star-convex functions J. Inequal. Spec. Funct. 7 150-167
[4]  
Toader G.(2017)On Hadamard type inequalities for J. Inequal. Spec. Funct. 8 2217-4303
[5]  
Farid G.(2010)-convex function via fractional integrals Appl. Math. Lett. 23 1065-1070
[6]  
Ur Rehman A.(1994)Some integral inequalities for Rev. Colomb. Mat. 28 7-12
[7]  
Tariq B.(2004)-convex functions via fractional integrals J. Inequal. Pure Appl. Math. 5 91-95
[8]  
Waheed A.(1998)On some inequalities of Hermite–Hadamard type via Appl. Math. Lett. 11 369-390
[9]  
Farid G.(2010)-convexity J. Inequal. Appl. 2010 93-106
[10]  
Tariq B.(2010)Convex functions and the Hadamard inequality J. Inequal. Appl. 2010 355-366