A previous study found that increased phosphorus (P) supply to frequently defoliated white clover plants, growing in a low-P, dry soil, alleviated water stress symptoms and increased plant recovery on rewatering. In this study we determined how these stresses influence white clover growth. Measurements were made of the leaf canopy, stolon infrastructure and root system of the white clover plants growing in a low-P soil. Treatments included the factorial combination of four levels of P supply, two defoliation frequencies and two soil water treatments. White clover growth declined markedly when P-deficient plants were exposed to frequent defoliation and dry soil conditions. Leaf area was more affected than other parameters, in that the combination of stresses reduced leaf area to 2% of maximum observed for infrequently defoliated plants growing in high-P soil, with adequate water. Increased P supply generally increased the growth of all plant parts. Frequently defoliated plants growing in dry soil produced similar or greater leaf mass and leaf area as plants from similar treatments growing in wet soil, when the P supply increased to 50 mg P kg-1 soil. Higher P rates were able to negate the effect of dry soil on these frequently defoliated plants, as a result of larger water and P uptake. Also, the frequently defoliated plants with restricted root growth did not respond to a small increase in P supply (17 mg P kg-1 soil) for the leaf growth, irrespective of whether they were growing in wet or dry soil. Infrequently defoliated plants with greater root growth, compared to frequently defoliated plants, more than doubled their leaf mass with this P treatment.