Machine learning enables completely automatic tuning of a quantum device faster than human experts

被引:0
作者
H. Moon
D. T. Lennon
J. Kirkpatrick
N. M. van Esbroeck
L. C. Camenzind
Liuqi Yu
F. Vigneau
D. M. Zumbühl
G. A. D. Briggs
M. A. Osborne
D. Sejdinovic
E. A. Laird
N. Ares
机构
[1] University of Oxford,Department of Materials
[2] DeepMind,Department of Applied Physics
[3] Eindhoven University of Technology,Department of Physics
[4] University of Basel,Department of Engineering
[5] University of Oxford,Department of Statistics
[6] University of Oxford,Department of Physics
[7] Lancaster University,undefined
来源
Nature Communications | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies.
引用
收藏
相关论文
共 29 条
[1]  
Vandersypen LMK(2016)Interfacing spin qubits in quantum dots and donors—hot, dense and coherent npj Quantum Inf. 3 1-10
[2]  
Hensgens T(2017)Quantum simulation of a fermi–hubbard model using a semiconductor quantum dot array Nature 548 70-73
[3]  
Petta JR(2005)Coherent manipulation of coupled electron spins in semiconductor quantum dots Science 309 2180-2184
[4]  
Malinowski FK(2017)Notch filtering the nuclear environment of a spin qubit Nat. Nanotechnol. 12 16-20
[5]  
Teske JD(2019)A machine learning approach for automated fine-tuning of semiconductor spin qubits Appl. Phys. Lett. 114 133102-2275
[6]  
Botzem T(2018)Tuning methods for semiconductor spin–qubits Phys. Rev. Appl. 10 054026-undefined
[7]  
Baart TA(2016)Computer-automated tuning of semiconductor double quantum dots into the single-electron regime Appl. Phys. Lett. 108 213104-undefined
[8]  
Eendebak PT(2019)Machine learning techniques for state recognition and auto-tuning in quantum dots npj Quantum Inf. 5 033101-undefined
[9]  
Reichl C(2019)Loading a quantum-dot based "Qubyte" register npj Quantum Inf. 5 054019-undefined
[10]  
Wegscheider W(2018)Automated tuning of inter-dot tunnel coupling in double quantum dots Appl. Phys. Lett. 113 113501-undefined