Nonlinear stability for stationary helical vortices

被引:0
作者
Maicon J. Benvenutti
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
来源
Nonlinear Differential Equations and Applications NoDEA | 2020年 / 27卷
关键词
Fluid mechanics; Euler equations; Stability; Helical symmetry; 35Q31; 76B03; 35B06; 35B35; 76E99;
D O I
暂无
中图分类号
学科分类号
摘要
We present a stability result for stationary smooth helical ideal fluid flows by using the direct method of Liapunov. It is enunciated in terms of the norm L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} of the velocity and vorticity. A stability for monotonic helical vortices in the norm L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} is also obtained.
引用
收藏
相关论文
共 37 条
[11]  
Burton G(1978)On nonlinear stability of stationary Euler flows on a rotating sphere Phys. Rev. Lett. 40 859-862
[12]  
Burton G(1989)Vortex waves: stationary V-states, interactions, recurrence, and breaking Invent. Math. 98 511-547
[13]  
Mcleod JB(1999)Ordinary differential equation, transport theory and Sobolev space C. R. Acad. Sci. Paris 329 653-656
[14]  
Caprino S(1970)Existence globale en temps de solutions hélicoïdales des équation d’Eler Ann. Math. 92 102-163
[15]  
Caprino S(2009)Groups of diffeomorphisms and the motion of an incompressible fluid SIAM J. Math. Anal. 41 269-296
[16]  
Deem G(1993)Global existence and uniqueness of weak solutions of three-dimensional Euler equations with helical symmetry in the absence of vorticity stretching Commun. Math. Phys. 155 277-294
[17]  
Zabusky N(1990)On the blow-up of solutions of the 3-D Euler equation in bounded domain Arch. Rational Mech. Anal. 112 193-222
[18]  
Diperna R(1987)Invariant helical subspaces for the Navier–Stokes equations J. Math. Anal. Appl. 128 413-418
[19]  
Lions P(1985)A remark on the stability problem in fluid dynamics Commun. Math. Phys. 100 343-354
[20]  
Dutrifoy A(2009)Some considerations on the nonlinear stability of stationary planar Euler flows Proc. Am. Math. Soc. 137 4199-4202