Nonlinear stability for stationary helical vortices

被引:0
作者
Maicon J. Benvenutti
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
来源
Nonlinear Differential Equations and Applications NoDEA | 2020年 / 27卷
关键词
Fluid mechanics; Euler equations; Stability; Helical symmetry; 35Q31; 76B03; 35B06; 35B35; 76E99;
D O I
暂无
中图分类号
学科分类号
摘要
We present a stability result for stationary smooth helical ideal fluid flows by using the direct method of Liapunov. It is enunciated in terms of the norm L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{2}$$\end{document} of the velocity and vorticity. A stability for monotonic helical vortices in the norm L1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}$$\end{document} is also obtained.
引用
收藏
相关论文
共 37 条
[1]  
Arnold V(1965)Conditions for nonlinear stability of stationary plane curvilinear flows of an ideal fluid Dokl. Nat. Nauk 162 773-777
[2]  
Arnold V(1969)On a priori estimate in the theory of hydrodynamical stability Am. Math. Soc. Transl. 79 267-269
[3]  
Beale T(1984)Remarks on the breakdown of smooth solutions for the 3D Euler equation Commun. Math. Phys. 94 61-66
[4]  
Kato T(2001)Renormalized solutions to the Vlasov equation with coefficients of bounded variation Arch. Rational Mech. Anal. 157 75-90
[5]  
Majda A(2015)Global existence of a weak solution of the incompressible Euler equations with helical symmetry and Indiana Univ. Math. J. 64 309-341
[6]  
Bouchut F(1989) vorticity Ann. Inst. Henri Poincare (C) Non Linear Anal. 6 295-319
[7]  
Bronzi A(2005)Variational problems on classes of rearrangements and multiple configurations for steady vortices Arch. Rational Mech. Anal. 176 149-163
[8]  
Lopes Filho MC(1991)Global nonlinear stability for steady ideal fluid flow in bounded planar domains Proc. R. Soc. Edinb. 119 287-300
[9]  
Nussenzveig Lopes HJ(1986)Maximisation and minimisation on classes of rearrangements Nonlinear Anal. Theory Methods Appl. 10 1263-1275
[10]  
Burton G(1988)On nonlinear stability of stationary planar Euler flows in an unbounded strip J. Math. Anal. Appl. 129 24-36