Qoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled Internet of Things

被引:0
|
作者
Jiaxin Hou
Yingbo Wu
Junpeng Cai
Zhiwen Zhou
机构
[1] Chongqing University,The School of Big data and Software Engineering
来源
Neural Computing and Applications | 2023年 / 35卷
关键词
Distributed decision; Task offloading; Quality of experience; Edge computing; Deep reinforcement learning;
D O I
暂无
中图分类号
学科分类号
摘要
In edge-enabled Internet of Things (IoT), Quality of Experience (QoE)-guaranteed offloading decision is to decide which IoT tasks can be offloaded to edge servers with QoE guarantee. Centralized QoE-guaranteed offloading decision methods construct a global decision model for all IoT tasks with complete information. However, centralized offloading decision methods entail collecting global information from IoT devices, edge servers, and network environment, which may not be practical in large-scale distributed edge-enabled IoT environments, and it is unrealistic for privacy-critical and heterogeneous IoT tasks in many real-world edge-enabled IoT systems, where IoT devices may refuse to expose their private information and heterogeneous IoT tasks may have different QoE requirements, these issues make the application of centralized offloading decision method limited. To address these limitations, we propose a distributed offloading decision method which enables each IoT device to make decisions by partially observable global information in a decentralized manner. The distributed offloading decision process is modeled as a multi-agent partially observable Markov decision process, and a novel model-free deep reinforcement learning-based distributed algorithm named GRU Fictitious Self-Play Dueling Double Deep Recurrent Q Network(GFSP-D3RQN) is introduced to solve the problem. Furthermore, we measure the QoE of each IoT device based on a combination of latency and energy consumption, which are weighted differently according to the individual preferences of each IoT device, using a non-dimensionalized adjustment to accommodate the varying requirements of these IoT devices. Extensive simulation results show that our algorithm can achieve a higher average QoE and higher success ratio compared with baseline algorithms, which improved by at least 6.38%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 5.91%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, respectively.
引用
收藏
页码:21603 / 21619
页数:16
相关论文
共 50 条
  • [1] Qoe-guaranteed distributed offloading decision via partially observable deep reinforcement learning for edge-enabled Internet of Things
    Hou, Jiaxin
    Wu, Yingbo
    Cai, Junpeng
    Zhou, Zhiwen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21603 - 21619
  • [2] QoE-Based Task Offloading With Deep Reinforcement Learning in Edge-Enabled Internet of Vehicles
    He, Xiaoming
    Lu, Haodong
    Du, Miao
    Mao, Yingchi
    Wang, Kun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (04) : 2252 - 2261
  • [3] Edge QoE: Computation Offloading With Deep Reinforcement Learning for Internet of Things
    Lu, Haodong
    He, Xiaoming
    Du, Miao
    Ruan, Xiukai
    Sun, Yanfei
    Wang, Kun
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9255 - 9265
  • [4] Federated Learning for Cost Optimized Offloading in Edge-enabled Industrial Internet of Things
    Hazra, Abhishek
    Mali, Bhabesh
    Kalita, Alakesh
    Gurusamy, Mohan
    2023 IEEE FUTURE NETWORKS WORLD FORUM, FNWF, 2024,
  • [5] Dynamic task offloading for Internet of Things in mobile edge computing via deep reinforcement learning
    Chen, Ying
    Gu, Wei
    Li, Kaixin
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2022,
  • [6] QoE-Driven Content-Centric Caching With Deep Reinforcement Learning in Edge-Enabled IoT
    He, Xiaoming
    Wang, Kun
    Xu, Wenyao
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (04) : 12 - 20
  • [7] Robust Risk-Sensitive Task Offloading for Edge-Enabled Industrial Internet of Things
    Zhou, Sheng
    Ali, Amjad
    Al-Fuqaha, Ala
    Omar, Marwan
    Feng, Li
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 1403 - 1413
  • [8] Deep Reinforcement Learning Based Computation Offloading in Fog Enabled Industrial Internet of Things
    Ren, Yijing
    Sun, Yaohua
    Peng, Mugen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4978 - 4987
  • [9] Edge-Enabled Two-Stage Scheduling Based on Deep Reinforcement Learning for Internet of Everything
    Zhou, Xiaokang
    Liang, Wei
    Yan, Ke
    Li, Weimin
    Wang, Kevin I-Kai
    Ma, Jianhua
    Jin, Qun
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (04) : 3295 - 3304
  • [10] Deep reinforcement learning-based collaborative computation offloading and caching decision for internet of things
    Li, Jianxin
    Yuan, Ke
    Wang, Qian
    Chen, Siguang
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2024, 17 (3-4)