Positive Solutions with High Energy for Fractional Schrödinger Equations

被引:0
|
作者
Qing Guo
Leiga Zhao
机构
[1] Minzu University of China,College of Science
[2] Beijing Technology and Business University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2023年 / 43卷
关键词
fractional Schrödinger equations; positive solution; concentration compactness principle; 35J60; 35J92; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the Schrödinger equations \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(- \Delta)^s}u + V(x)u = a(x)|u{|^{p - 2}}u + b(x)|u{|^{q - 2}}u,\,\,\,\,\,x \in {\mathbb{R}^N},$$\end{document} where 0 < s < 1, 2 < q < p < 2s*,2s* is the fractional Sobolev critical exponent. Under suitable assumptions on V, a and b for which there may be no ground state solution, the existence of positive solutions are obtained via variational methods.
引用
收藏
页码:1116 / 1130
页数:14
相关论文
共 50 条
  • [21] Stability Analysis of Solutions to the Time–Fractional Nonlinear Schrödinger Equations
    Natasha Irshad
    Rahim Shah
    Kinza Liaquat
    Emad E. Mahmoud
    International Journal of Theoretical Physics, 64 (5)
  • [22] On existence and concentration behavior of positive ground state solutions for a class of fractional Schrödinger–Choquard equations
    Zu Gao
    Xianhua Tang
    Sitong Chen
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [23] Existence and decays of solutions for fractional Schrödinger equations with general potentials
    Deng, Yinbin
    Peng, Shuangjie
    Yang, Xian
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (05)
  • [24] POSITIVE SOLUTIONS TO HYBRID SCHR?DINGER EQUATION WITH NORMAL AND FRACTIONAL LAPLACIANS
    Xiaoqing Wen
    Lina Wang
    Hongwei Yin
    Annals of Applied Mathematics, 2015, 31 (04) : 446 - 451
  • [25] Existence of infinitely many high energy solutions for a class of fractional Schrödinger systems
    Qi Li
    Zengqin Zhao
    Xinsheng Du
    Advances in Difference Equations, 2020
  • [26] Positive Least Energy Solutions and Phase Separation for Coupled Schrödinger Equations with Critical Exponent
    Zhijie Chen
    Wenming Zou
    Archive for Rational Mechanics and Analysis, 2012, 205 : 515 - 551
  • [27] Least energy solutions to a class of nonlocal Schrådinger equations
    Zhang, Yong-Chao
    AIMS MATHEMATICS, 2024, 9 (08): : 20763 - 20772
  • [28] Zero-energy solutions and vortices in Schrödinger equations
    Kobayashi, Tsunehiro
    Shimbori, Toshiki
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (4 A): : 421081 - 421081
  • [29] Positive Solutions with High Energy for Fractional Schrodinger Equations
    Guo, Qing
    Zhao, Leiga
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1116 - 1130
  • [30] Positive solutions for a class of quasilinear Schrödinger equations with vanishing potentials
    Xiaonan Liu
    Haibo Chen
    Boundary Value Problems, 2017