On a Characterization of C1,1 Functions

被引:1
作者
A. Ioffe
T. Milosz
机构
[1] Technion,Department of Mathematics
[2] Warsaw University,Department of Economic Sciences
关键词
Lipschitz condition; directional derivative; Clarke regularity; semicontinuity; convexity;
D O I
10.1023/A:1020319424118
中图分类号
学科分类号
摘要
The equivalence of different properties inherent in locally Lipshitz functions on an open subset of a Banach space is studied. Basic properties of generalized second-order derivatives are given.
引用
收藏
页码:313 / 322
页数:9
相关论文
共 15 条
[1]  
Cominetti R.(1986)FrSur une dérivée du second ordre en analise non-différentiable Compte Rendus des Sciences de l'Academie des Sciences 303 761-764
[2]  
Correa R.(1990)A generalized second-order derivative in nonsmooth optimization SIAM J. Control Optimization 28 789-909
[3]  
Cominetti R.(1982)Characterization of the plenary hull of the generalized Jacobian matrix Math. Programming Study 17 1-12
[4]  
Correa R.(1989)Moreau's decomposition theorem revisited Ann. Inst. Henri Poincaré, Analyse Non-lineairé 6 325-338
[5]  
Hiriart-Urruty J.-B.(1981)Nonsmooth analysis: differential calculus of nondifferentiable mappings Trans. Amer. Math. Soc. 266 1-56
[6]  
Hiriart-Urruty J.-B.(2000)Metric regularity and subdifferential calculus Usp. Mat. Nauk 55 103-162
[7]  
Plazenet P.(1997)Limiting sub-Hessians, limiting subject, and their calculus Trans. Amer. Math. Soc. 349 789-807
[8]  
Ioffe A. D.(1996)Convex composite minimization with J. Optimiz. Theory Appl. 86 631-648
[9]  
Ioffe A. D.(1996)11, functions Mathematical Programming 74 59-78
[10]  
Ioffe A. D.(undefined)Generalized Hessians for undefined undefined undefined-undefined