Universal Scaling Form of the Equation of State of a Critical Pure Fluid

被引:0
|
作者
Y. Garrabos
B. Le Neindre
R. Wunenburger
C. Lecoutre-Chabot
D. Beysens
机构
[1] Université de Bordeaux I,Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, Centre National de la Recherche Scientifique, UPR 9048
[2] Université Paris 13,Laboratoire d'Ingéniérie des Matériaux et des Hautes Pressions, Centre National de la Recherche Scientifique, UPR 1311
[3] Equipe du Supercritique pour l'Environnement,undefined
[4] les Matériaux et l'Espace,undefined
[5] Service des Basses Températures,undefined
[6] Commissariat à l'Energie Atomique,undefined
来源
International Journal of Thermophysics | 2002年 / 23卷
关键词
critical phenomena; equation of state; gas-liquid critical point; gas-liquid coexistence curve; scaling factors;
D O I
暂无
中图分类号
学科分类号
摘要
Close to the liquid gas critical point, the linear treatment of the symmetrical one-component Φ4 model to observe the fluid-restricted universality of the subclass of pure fluids is reversed. The comparison with the fitting results obtained from the recent applications of the crossover description to CO2, CH4, C2H4, C2H6, R134a, SF6, and H2O confirms that the dimensionless characteristic two scale factors involved in this description are: (a) the critical compressibility factor and (b) the slope at the critical point of the reduced potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{P}{T}\frac{{T_c }}{{P_c }}$$ \end{document} along the critical isochore. For the two-phase domain along the critical isochore, a precise formulation for the extension range of the fluid-restricted universality is given in terms of the reduced scaling size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$l^{* - } = \frac{{\xi ^ - }}{{a_c }}$$ \end{document} of the critical density fluctuations, expressed as a function of the dilated scaling field which measures the distance to the critical point below Tc. The explicit definition of the microscopic length scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a_c = (\frac{{k_B T_c }}{{P_c }})^{\frac{1}{3}} $$ \end{document}, which characterizes the short-range of the microscopic interaction, gives a correlative estimation of the crossover domain when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\xi ^ - \sim a_c $$ \end{document}.
引用
收藏
页码:997 / 1011
页数:14
相关论文
共 50 条
  • [41] Computation and modeling of critical phenomena with the perturbed chain-statistical associating fluid theory equation of state
    Arce, Pedro F.
    Aznar, Martin
    JOURNAL OF SUPERCRITICAL FLUIDS, 2008, 43 (03): : 408 - 420
  • [42] THERMODYNAMIC STABILITY OF A FLUID WITH VARIABLE EQUATION OF STATE
    Mazumder, Nairwita
    Biswas, Ritabrata
    Chakraborty, Subenoy
    MODERN PHYSICS LETTERS A, 2010, 25 (27) : 2333 - 2348
  • [43] Equation of State for the Lennard-Jones Fluid
    Thol, Monika
    Rutkai, Gabor
    Koester, Andreas
    Lustig, Rolf
    Span, Roland
    Vrabec, Jadran
    JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2016, 45 (02)
  • [44] A thermodynamic equation of state for the critical region of ethylene
    Abbaci, A
    Berrezeg, A
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (03) : 739 - 752
  • [45] A thermodynamic equation of state for the critical region of argon
    Rizi, Aicha
    Abbaci, Azzedine
    JOURNAL OF MOLECULAR LIQUIDS, 2012, 171 : 64 - 70
  • [46] EQUATION OF STATE AND CRITICAL-POINT OF CESIUM
    VARGAFTIK, NB
    GELMAN, EB
    KOZHEVNIKOV, VF
    NAURSAKOV, SP
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1990, 11 (03) : 467 - 476
  • [47] A Thermodynamic Equation of State For the Critical Region of Ethylene
    A. Abbaci
    A. Berrezeg
    International Journal of Thermophysics, 2004, 25 : 739 - 752
  • [48] Equation of state of a supercritical fluid based on the Ornstein-Zernike equation
    A. A. Anikeev
    S. B. Viktorov
    S. A. Gubin
    Russian Journal of Physical Chemistry B, 2014, 8 : 56 - 60
  • [49] Equation of state of a supercritical fluid based on the Ornstein-Zernike equation
    Anikeev, A. A.
    Viktorov, S. B.
    Gubin, S. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 8 (01) : 56 - 60
  • [50] General form of the Mie-Gruneisen equation of state
    Heuze, Olivier
    COMPTES RENDUS MECANIQUE, 2012, 340 (10): : 679 - 687