Universal Scaling Form of the Equation of State of a Critical Pure Fluid

被引:0
|
作者
Y. Garrabos
B. Le Neindre
R. Wunenburger
C. Lecoutre-Chabot
D. Beysens
机构
[1] Université de Bordeaux I,Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, Centre National de la Recherche Scientifique, UPR 9048
[2] Université Paris 13,Laboratoire d'Ingéniérie des Matériaux et des Hautes Pressions, Centre National de la Recherche Scientifique, UPR 1311
[3] Equipe du Supercritique pour l'Environnement,undefined
[4] les Matériaux et l'Espace,undefined
[5] Service des Basses Températures,undefined
[6] Commissariat à l'Energie Atomique,undefined
来源
International Journal of Thermophysics | 2002年 / 23卷
关键词
critical phenomena; equation of state; gas-liquid critical point; gas-liquid coexistence curve; scaling factors;
D O I
暂无
中图分类号
学科分类号
摘要
Close to the liquid gas critical point, the linear treatment of the symmetrical one-component Φ4 model to observe the fluid-restricted universality of the subclass of pure fluids is reversed. The comparison with the fitting results obtained from the recent applications of the crossover description to CO2, CH4, C2H4, C2H6, R134a, SF6, and H2O confirms that the dimensionless characteristic two scale factors involved in this description are: (a) the critical compressibility factor and (b) the slope at the critical point of the reduced potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{P}{T}\frac{{T_c }}{{P_c }}$$ \end{document} along the critical isochore. For the two-phase domain along the critical isochore, a precise formulation for the extension range of the fluid-restricted universality is given in terms of the reduced scaling size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$l^{* - } = \frac{{\xi ^ - }}{{a_c }}$$ \end{document} of the critical density fluctuations, expressed as a function of the dilated scaling field which measures the distance to the critical point below Tc. The explicit definition of the microscopic length scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a_c = (\frac{{k_B T_c }}{{P_c }})^{\frac{1}{3}} $$ \end{document}, which characterizes the short-range of the microscopic interaction, gives a correlative estimation of the crossover domain when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\xi ^ - \sim a_c $$ \end{document}.
引用
收藏
页码:997 / 1011
页数:14
相关论文
共 50 条
  • [31] Supercritical Fluid Adsorption to Weakly Attractive Solids: Universal Scaling Laws
    Gruszkiewicz, Miroslaw S.
    Rother, Gernot
    Vlcek, Lukas
    DiStefano, Victoria H.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (27): : 15558 - 15566
  • [32] Fundamental Equation of State for Fluid Tetrahydrofuran
    Fiedler, Felix
    Karog, Joel
    Lemmon, Eric W.
    Thol, Monika
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2023, 44 (10)
  • [33] Fundamental Equation of State for Fluid Tetrahydrofuran
    Felix Fiedler
    Joel Karog
    Eric W. Lemmon
    Monika Thol
    International Journal of Thermophysics, 2023, 44
  • [34] Flexible equation of state for a hard sphere and Lennard-Jones fluid near critical temperature
    Khasare, S. B.
    PRAMANA-JOURNAL OF PHYSICS, 2014, 83 (06): : 955 - 962
  • [35] Equation of state for the hard tetrahedron fluid at stable state
    Tian, Jianxiang
    Jiang, Hua
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (14):
  • [36] A hybrid equation of state for Stockmayer pure fluids and mixtures
    Kriebel, C
    Muller, A
    Winkelmann, J
    Fischer, J
    FLUID PHASE EQUILIBRIA, 1996, 119 (1-2) : 67 - 80
  • [37] EXTENSION OF A QUARTIC EQUATION OF STATE TO PURE POLAR FLUIDS
    Zang, Lian-yun
    Zhu, Qing-li
    Yun, Zhi
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2011, 89 (03): : 453 - 459
  • [38] Thermohaline equation of state for pure water, seawater and brine
    Baddour, Raouf E.
    JOURNAL OF HYDRAULIC RESEARCH, 2023, 61 (02) : 211 - 219
  • [39] A NEW EQUATION OF STATE FOR POLAR AND NONPOLAR PURE FLUIDS
    BRANDANI, V
    DELRE, G
    DIGIACOMO, G
    BRANDANI, P
    FLUID PHASE EQUILIBRIA, 1992, 75 : 81 - 87
  • [40] Crossover SAFT equation of state for pure supercritical fluids
    Hu, ZQ
    Yang, JC
    Li, YG
    FLUID PHASE EQUILIBRIA, 2003, 205 (01) : 1 - 15