Universal Scaling Form of the Equation of State of a Critical Pure Fluid

被引:0
|
作者
Y. Garrabos
B. Le Neindre
R. Wunenburger
C. Lecoutre-Chabot
D. Beysens
机构
[1] Université de Bordeaux I,Equipe du Supercritique pour l'Environnement, les Matériaux et l'Espace, Institut de Chimie de la Matière Condensée de Bordeaux, Centre National de la Recherche Scientifique, UPR 9048
[2] Université Paris 13,Laboratoire d'Ingéniérie des Matériaux et des Hautes Pressions, Centre National de la Recherche Scientifique, UPR 1311
[3] Equipe du Supercritique pour l'Environnement,undefined
[4] les Matériaux et l'Espace,undefined
[5] Service des Basses Températures,undefined
[6] Commissariat à l'Energie Atomique,undefined
来源
International Journal of Thermophysics | 2002年 / 23卷
关键词
critical phenomena; equation of state; gas-liquid critical point; gas-liquid coexistence curve; scaling factors;
D O I
暂无
中图分类号
学科分类号
摘要
Close to the liquid gas critical point, the linear treatment of the symmetrical one-component Φ4 model to observe the fluid-restricted universality of the subclass of pure fluids is reversed. The comparison with the fitting results obtained from the recent applications of the crossover description to CO2, CH4, C2H4, C2H6, R134a, SF6, and H2O confirms that the dimensionless characteristic two scale factors involved in this description are: (a) the critical compressibility factor and (b) the slope at the critical point of the reduced potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\frac{P}{T}\frac{{T_c }}{{P_c }}$$ \end{document} along the critical isochore. For the two-phase domain along the critical isochore, a precise formulation for the extension range of the fluid-restricted universality is given in terms of the reduced scaling size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$l^{* - } = \frac{{\xi ^ - }}{{a_c }}$$ \end{document} of the critical density fluctuations, expressed as a function of the dilated scaling field which measures the distance to the critical point below Tc. The explicit definition of the microscopic length scale \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a_c = (\frac{{k_B T_c }}{{P_c }})^{\frac{1}{3}} $$ \end{document}, which characterizes the short-range of the microscopic interaction, gives a correlative estimation of the crossover domain when \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\xi ^ - \sim a_c $$ \end{document}.
引用
收藏
页码:997 / 1011
页数:14
相关论文
共 50 条
  • [1] Universal scaling form of the equation of state of a critical pure fluid
    Garrabos, Y
    Le Neindre, B
    Wunenburger, R
    Lecoutre-Chabot, C
    Beysens, D
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2002, 23 (04) : 997 - 1011
  • [2] CRITICAL SCALING LAWS AND A CLASSICAL EQUATION OF STATE
    VANPELT, A
    JIN, GX
    SENGERS, JV
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1994, 15 (04) : 687 - 697
  • [3] Equation of state for pure fluids at critical temperature
    Khasare, S. B.
    CHINESE PHYSICS B, 2012, 21 (04)
  • [4] Equation of state for pure fluids at critical temperature
    S. B. Khasare
    Chinese Physics B, 2012, 21 (04) : 382 - 386
  • [5] A crossover lattice fluid equation of state for pure fluids
    Shin, Moon Sam
    Lee, Yongjin
    Kim, Hwayong
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2008, 40 (02): : 174 - 179
  • [6] AN EQUATION OF STATE FOR PURE FLUIDS DESCRIBING THE CRITICAL REGION
    KRASKA, T
    DEITERS, UK
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1994, 15 (02) : 261 - 281
  • [7] The modified PGR equation of state: Pure-fluid predictions
    Row, KH
    Park, JK
    Gasem, KAM
    CHEMICAL ENGINEERING COMMUNICATIONS, 2006, 193 (04) : 438 - 459
  • [8] Simplified crossover SAFT equation of state for pure fluids and fluid mixtures
    Kiselev, SB
    Fly, JF
    FLUID PHASE EQUILIBRIA, 2000, 174 (1-2) : 93 - 113
  • [9] A scaling equation of state near the critical point and the stability boundary of a liquid
    Bezverkhii P.P.
    Martynets V.G.
    Matizen E.V.
    Journal of Engineering Thermophysics, 2007, 16 (3) : 164 - 168
  • [10] Critical scaling in a pure organic ferromagnet
    Paulsen, C
    Souletie, J
    Rey, P
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART II) : 1964 - 1966