Electrochemical sensor based on glassy carbon electrode modified by polymelamine formaldehyde/graphene oxide nanocomposite for ultrasensitive detection of oxycodone

被引:0
|
作者
Hossein Khosropour
Behzad Rezaei
Hossein A. Alinajafi
Ali A. Ensafi
机构
[1] Isfahan University of Technology,Department of Chemistry
来源
Microchimica Acta | 2021年 / 188卷
关键词
Oxycodone; Electrochemical sensor; Polymelamine formaldehyde; Graphene oxide nanocomposite;
D O I
暂无
中图分类号
学科分类号
摘要
Polymelamine formaldehyde/graphene oxide (PMF/GO) nanocomposite was used, for the first time, to study the ultrasensitive and selective electrochemical detection of oxycodone (OXC). The successful characterization of PMF/GO was verified based on scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The modified GCE (PMF/GO-GCE) proved its electrocatalytic effect on OXC determination according to cyclic, linear sweep, and differential pulse voltammetry (CV, LSV, and DPV) and electrochemical impedance spectroscopy (EIS) studies. The developed sensor under optimal conditions offered a linear relationship in a limited range of  0.01 to 45 μmol L−1 with the limit of detection (LOD) of 2.0 nmol L−1. The proposed PMF/GO-GCE sensor was effectively employed for the OXC detection in human urine and serum samples.
引用
收藏
相关论文
共 50 条
  • [1] Electrochemical sensor based on glassy carbon electrode modified by polymelamine formaldehyde/graphene oxide nanocomposite for ultrasensitive detection of oxycodone
    Khosropour, Hossein
    Rezaei, Behzad
    Alinajafi, Hossein A.
    Ensafi, Ali A.
    MICROCHIMICA ACTA, 2021, 188 (01)
  • [2] Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine
    Palanisamy, Selvakumar
    Ramaraj, Sayee Kannan
    Chen, Shen-Ming
    Velusamy, Vijayalakshmi
    Yang, Thomas C. K.
    Chen, Tse-Wei
    MICROCHIMICA ACTA, 2017, 184 (04) : 1051 - 1057
  • [3] Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine
    Selvakumar Palanisamy
    Sayee Kannan Ramaraj
    Shen-Ming Chen
    Vijayalakshmi Velusamy
    Thomas C. K. Yang
    Tse-Wei Chen
    Microchimica Acta, 2017, 184 : 1051 - 1057
  • [4] An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection
    Fu, Li
    Zheng, Yuhong
    Wang, Aiwu
    Cai, Wen
    Deng, Bo
    Zhang, Zhi
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2016, 41 (01) : 135 - 141
  • [5] Electrochemical detection of selenium using glassy carbon electrode modified with reduced graphene oxide
    Idris, Azeez O.
    Mabuba, Nonhlangabezo
    Nkosi, Duduzile
    Maxakato, Nobanathi
    Arotiba, Omotayo A.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL ANALYTICAL CHEMISTRY, 2017, 97 (06) : 534 - 547
  • [6] An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection
    Li Fu
    Yuhong Zheng
    Aiwu Wang
    Wen Cai
    Bo Deng
    Zhi Zhang
    Arabian Journal for Science and Engineering, 2016, 41 : 135 - 141
  • [7] Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials
    Guo, Zhuo
    Wang, Ze-yu
    Wang, Hui-hua
    Huang, Guo-qing
    Li, Meng-meng
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 57 : 197 - 204
  • [8] An ultrasensitive electrochemical sensor for detecting porcine epidemic diarrhea virus based on a Prussian blue-reduced graphene oxide modified glassy carbon electrode
    Li, Zhili
    Luo, Yuhang
    Huang, Zongyang
    Zhao, Chen
    Chen, Hongjin
    El-Ashram, Saeed
    Huang, Jun
    Su, Langju
    Zhang, Wandi
    Ma, Guangmiao
    Liang, Yong
    Guo, Jinyue
    Huang, Shujian
    Zhao, Yunxiang
    ANALYTICAL BIOCHEMISTRY, 2023, 662
  • [9] Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide
    Dai, Hongxiu
    Wang, Nan
    Wang, Donglei
    Zhang, Xiaomei
    Ma, Houyi
    Lin, Meng
    MICROCHIMICA ACTA, 2016, 183 (11) : 3053 - 3059
  • [10] Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide
    Hongxiu Dai
    Nan Wang
    Donglei Wang
    Xiaomei Zhang
    Houyi Ma
    Meng Lin
    Microchimica Acta, 2016, 183 : 3053 - 3059