Signatures of sneutrino dark matter in an extension of the CMSSM

被引:0
作者
Shankha Banerjee
Geneviève Bélanger
Biswarup Mukhopadhyaya
Pasquale D. Serpico
机构
[1] LAPTH,
[2] Université de Savoie,undefined
[3] CNRS,undefined
[4] Regional Centre for Accelerator-based Particle Physics,undefined
[5] Harish-Chandra Research Institute,undefined
来源
Journal of High Energy Physics | / 2016卷
关键词
Beyond Standard Model; Supersymmetric Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics;
D O I
暂无
中图分类号
学科分类号
摘要
Current data (LHC direct searches, Higgs mass, dark matter-related bounds) severely affect the constrained minimal SUSY standard model (CMSSM) with neutralinos as dark matter candidates. But the evidence for neutrino masses coming from oscillations requires extending the SM with at least right-handed neutrinos with a Dirac mass term. In turn, this implies extending the CMSSM with right-handed sneutrino superpartners, a scenario we dub ν˜CMSSM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{\nu}\mathrm{CMSSM} $$\end{document}. These additional states constitute alternative dark matter candidates of the superWIMP type, produced via the decay of the long-lived next-to-lightest SUSY particle (NLSP). Here we consider the interesting and likely case where the NLSP is a τ˜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \tilde{\tau} $$\end{document}: despite the modest extension with respect to the CMSSM this scenario has the distinctive signatures of heavy, metastable charged particles. After taking into account the role played by neutrino mass bounds and the specific cosmological bounds from the big bang nucleosynthesis in selecting the viable parameter space, we discuss the excellent discovery prospects for this model at the future runs of the LHC. We show that it is possible to probe τ˜1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\tau}}_1 $$\end{document} masses up to 600 GeV at the 14 TeV LHC with ℒ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{L}} $$\end{document} = 1100 fb−1 when one considers a pair production of staus with two or more hard jets through all SUSY processes. We also show the complementary discovery prospects from a direct τ˜1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\tilde{\tau}}_1 $$\end{document} pair production, as well as at the new experiment MoEDAL.
引用
收藏
相关论文
共 167 条
[1]  
Barbieri R(1988)Upper Bounds on Supersymmetric Particle Masses Nucl. Phys. B 306 63-undefined
[2]  
Giudice GF(2012)A Natural SUSY Higgs Near 126 GeV JHEP 04 131-undefined
[3]  
Hall LJ(1982)Locally Supersymmetric Grand Unification Phys. Rev. Lett. 49 970-undefined
[4]  
Pinner D(2013)Post-LHC7 fine-tuning in the minimal supergravity/CMSSM model with a 125 GeV Higgs boson Phys. Rev. D 87 035017-undefined
[5]  
Ruderman JT(2012)Tuning supersymmetric models at the LHC: A comparative analysis at two-loop level JHEP 07 046-undefined
[6]  
Chamseddine AH(2013)Global Fits of the CMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints JCAP 04 013-undefined
[7]  
Arnowitt RL(2014)Bayesian naturalness of the CMSSM and CNMSSM Phys. Rev. D 90 055008-undefined
[8]  
Nath P(2014)The CMSSM and NUHM1 after LHC Run 1 Eur. Phys. J. C 74 2922-undefined
[9]  
Baer H(2014)What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection JHEP 08 067-undefined
[10]  
Barger V(2016)Killing the CMSSM softly Eur. Phys. J. C 76 96-undefined