Elliptic families of solutions of the constrained Toda hierarchy

被引:0
作者
A. V. Zabrodin
机构
[1] Skolkovo Institute of Science and Technology,
[2] National Research University “Higher School of Economics”,undefined
[3] Alikhanov Institute for Theoretical and Experimental Physics,undefined
[4] National Research Center “Kurchatov Institute”,undefined
来源
Theoretical and Mathematical Physics | 2022年 / 213卷
关键词
constrained Toda hierarchy; elliptic solutions;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1362 / 1368
页数:6
相关论文
共 30 条
  • [1] Jimbo M.(1983)Soliton equations and infinite dimensional Lie algebras Publ. RIMS, Kyoto Univ. 19 943-1001
  • [2] Miwa T.(2022)Constrained Toda hierarchy and turning points of the Ruijsenaars– Schneider model Lett. Math. Phys. 112 95-148
  • [3] Krichever I.(1977)Rational and elliptic solutions of the Korteweg–De Vries equation and a related many-body problem Commun. Pure Appl. Math. 30 59-61
  • [4] Zabrodin A.(1978)Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of Funct. Anal. Appl. 12 339-353
  • [5] Airault H.(1977) particles on a line Nuovo Cimento B 40 419-436
  • [6] McKean H. P.(1971)Pole expansions of nonlinear partial differential equations J. Math. Phys. 12 411-416
  • [7] Moser J.(1975)Solution of the one-dimensional Lett. Nuovo Cimento 13 197-220
  • [8] Krichever I. M.(1975)-body problems with quadratic and/or inversely quadratic pair potentials Adv. Math. 16 313-400
  • [9] Choodnovsky D. V.(1981)Exactly solvable one-dimensional many-body problems Phys. Rep. 71 282-290
  • [10] Choodnovsky G. V.(1980)Three integrable Hamiltonian systems connected with isospectral deformations Funct. Anal. Appl. 14 1101-1150