Improvement of photovoltaic performance by substituent effect of donor and acceptor structure of TPA-based dye-sensitized solar cells

被引:0
作者
Natalia Inostroza
Fernando Mendizabal
Ramiro Arratia-Pérez
Carlos Orellana
Cristian Linares-Flores
机构
[1] Universidad Autonoma de Chile,Inorganic Chemistry and Molecular Material center and Theoretical and computational chemistry center, Facultad de Ingeniería
[2] Universidad de Chile,Departmento de Química, Facultad de Ciencias
[3] Universidad Andrés Bello,Doctorado en Fisicoquímica Molecular, Relativistic Molecular Physics (ReMoPh) Group
[4] Universidad Metropolitana de Ciencias de la Educación,Departamento de Química, Facultad de Ciencias Básicas
[5] Núcleo Milenio de Ingeniería Molecular para Catálisis y Biosensores,undefined
[6] ICM,undefined
来源
Journal of Molecular Modeling | 2016年 / 22卷
关键词
Density functional theory; Electronic absorption spectra; Molecular design; Organic dye-sensitized solar cells;
D O I
暂无
中图分类号
学科分类号
摘要
We report a computational study of a series of organic dyes built with triphenylamine (TPA) as an electron donor group. We designed a set of six dyes called (TPA-n, where n = 0–5). In order to enhance the electron-injection process, the electron-donor effect of some specific substituent was studied. Thus, we gave insights into the rational design of organic TPA-based chromophores for use in dye-sensitized solar cells (DSSCs). In addition, we report the HOMO, LUMO, the calculated excited state oxidized potential Edye*(eV) and the free energy change for electron-injection ΔGinject(eV), and the UV-visible absorption bands for TPA-n dyes by a time-dependent density functional theory (TDDFT) procedure at the B3LYP and CAM-B3LYP levels with solvent effect. The results demonstrate that the introduction of the electron-acceptor groups produces an intramolecular charge transfer showing a shift of the absorption wavelengths of TPA-n under studies.
引用
收藏
相关论文
共 203 条
  • [1] Singh G(2013)Restrepogo Energy 53 1-350
  • [2] Grätzel M(2009)undefined Acc Chem Res 42 1788-1798
  • [3] Urbani M(2014)undefined Chem Rev 114 12330-12396
  • [4] Grätzel M(2013)undefined J Phys Chem C 117 3685-3700
  • [5] Nazeeruddin MK(2010)undefined J Chem Theory Comput 6 1219-1227
  • [6] Torres T(2011)undefined J Phys Chem C 115 8825-8831
  • [7] Pastore M(2012)undefined Angew Chem Int Ed 51 7528-7531
  • [8] Fantacci S(2009)undefined Chem Commun 45 5483-5495
  • [9] De Angelis F(2007)undefined J Am Chem Soc 129 10320-10321
  • [10] Casanova D(2011)undefined J Org Chem 76 4088-4093