Intein-mediated site-specific conjugation of Quantum Dots to proteins in vivo

被引:21
作者
Charalambous A. [1 ]
Andreou M. [1 ]
Skourides P.A. [1 ]
机构
[1] Department of Biological Sciences, University of Cyprus, 1678 Nicosia
关键词
Xenopus Embryo; Conjugation Method; Split Intein; Streptavidin Molecule; Superior Optical Property;
D O I
10.1186/1477-3155-7-9
中图分类号
学科分类号
摘要
We describe an intein based method to site-specifically conjugate Quantum Dots (QDs) to target proteins in vivo. This approach allows the covalent conjugation of any nanostructure and/or nanodevice to any protein and thus the targeting of such material to any intracellular compartment or signalling complex within the cells of the developing embryo. We genetically fused a pleckstrin-homology (PH) domain with the N-terminus half of a split intein (IN). The C-terminus half (I) of the intein was conjugated to QDs in vitro. IC-QD's and RNA encoding PH-IN were microinjected into Xenopus embryos. In vivo intein-splicing resulted in fully functional QD-PH conjugates that could be monitored in real time within live embryos. Use of Near Infra Red (NIR)-emitting QDs allowed monitoring of QD-conjugates within the embryo at depths where EGFP is undetectable demonstrating the advantages of QD's for this type of experiment. In conclusion, we have developed a novel in vivo methodology for the site-specific conjugation of QD's and other artificial structures to target proteins in different intracellular compartments and signaling complexes. © 2009 Charalambous et al; licensee BioMed Central Ltd.
引用
收藏
相关论文
共 24 条
[1]  
Michalet X., Pinaud F.F., Bentolila L.A., Tsay J.M., Doose S., Li J.J., Sundaresan G., Wu A.M., Gambhir S.S., Weiss S., Quantum dots for live cells, in vivo imaging, and diagnostics, Science, 307, 5709, pp. 538-544, (2005)
[2]  
Shcherbo D., Merzlyak E.M., Chepurnykh T.V., Fradkov A.F., Ermakova G.V., Solovieva E.A., Lukyanov K.A., Bogdanova E.A., Zaraisky A.G., Lukyanov S., Bright far-red fluorescent protein for whole-body imaging, Nat Methods, 4, 9, pp. 741-746, (2007)
[3]  
Stepanenko O.V., Verkhusha V.V., Kuznetsova I.M., Uversky V.N., Turoverov K.K., Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes, Curr Protein Pept Sci, 9, 4, pp. 338-369, (2008)
[4]  
Shu X., Royant A., Lin M.Z., Aguilera T.A., Lev-Ram V., Steinbach P.A., Tsien R.Y., Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome, Science, 324, 5928, pp. 804-807, (2009)
[5]  
Rao J., Dragulescu-Andrasi A., Yao H., Fluorescence imaging in vivo: recent advances, Curr Opin Biotechnol, 18, 1, pp. 17-25, (2007)
[6]  
Liu W., Choi H.S., Zimmer J.P., Tanaka E., Frangioni J.V., Bawendi M., Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications, J Am Chem Soc, 129, 47, pp. 14530-14531, (2007)
[7]  
Howarth M., Liu W., Puthenveetil S., Zheng Y., Marshall L.F., Schmidt M.M., Wittrup K.D., Bawendi M.G., Ting A.Y., Monovalent, reduced-size quantum dots for imaging receptors on living cells, Nat Methods, 5, 5, pp. 397-399, (2008)
[8]  
Evans T.J.T., Xu M.Q., Mechanistic and kinetic considerations of protein splicing, Chem Rev, 102, 12, pp. 4869-4884, (2002)
[9]  
Giriat I., Muir T.W., Protein semi-synthesis in living cells, J Am Chem Soc, 125, 24, pp. 7180-7181, (2003)
[10]  
Muralidharan V., Muir T.W., Protein ligation: an enabling technology for the biophysical analysis of proteins, Nat Methods, 3, 6, pp. 429-438, (2006)