Settling of finite-size particles in turbulence at different volume fractions

被引:0
|
作者
Walter Fornari
Sagar Zade
Luca Brandt
Francesco Picano
机构
[1] KTH Mechanics,Linné Flow Centre and Swedish e
[2] University of Padova,Science Research Centre (SeRC)
来源
Acta Mechanica | 2019年 / 230卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the settling of finite-size rigid spheres in quiescent fluid and in sustained homogeneous isotropic turbulence (HIT) by direct numerical simulations using an immersed boundary method to account for the dispersed solid phase. We consider semi-dilute and dense suspensions of rigid spheres with solid volume fractions ϕ=0.5-10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =0.5{-}10\%$$\end{document}, solid-to-fluid density ratio R=1.02\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=1.02$$\end{document}, and Galileo number (i.e., the ratio between buoyancy and viscous forces) Ga=145\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ga=145$$\end{document}. In HIT, the nominal Reynolds number based on the Taylor microscale is Reλ≃90\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_{\lambda } \simeq 90$$\end{document}, and the ratio between the particle diameter and the nominal Kolmogorov scale is (2a)/η≃12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2a)/\eta \simeq 12$$\end{document} (being a the particle radius). We find that in HIT the mean settling speed is less than that in quiescent fluid for all ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. For ϕ=0.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =0.5\%$$\end{document}, the mean settling speed in HIT is 8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\%$$\end{document} less than in quiescent fluid. However, by increasing the volume fraction the difference in the mean settling speed between quiescent fluid and HIT cases reduces, being only 1.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7\%$$\end{document} for ϕ=10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =10\%$$\end{document}. Indeed, while at low ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} the settling speed is strongly altered by the interaction with turbulence, at large ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document} this is mainly determined by the (strong) hindering effect. This is similar in quiescent fluid and in HIT, leading to similar mean settling speeds. On the contrary, particle angular velocities are always found to increase with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. These are enhanced by the interaction with turbulence, especially at low ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. In HIT, the correlations of particle lateral velocity fluctuations oscillate around zero before decorrelating completely. The time period of the oscillation seems proportional to the ratio between the integral lengthscale of turbulence and the particle characteristic terminal velocity. Regarding the mean square particle displacement, we find that it is strongly enhanced by turbulence in the direction perpendicular to gravity, even at the largest ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. Finally, we investigate the collision statistics for all cases and find the interesting result that the collision frequency is larger in quiescent fluid than in HIT for ϕ=0.5-1%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =0.5{-}1\%$$\end{document}. This is due to frequent drafting–kissing–tumbling events in quiescent fluid. The collision frequency becomes instead larger in HIT than in still fluid for ϕ=5-10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi =5{-}10\%$$\end{document}, due to the larger relative approaching velocities in HIT, and to the less intense drafting–kissing–tumbling events in quiescent fluid. The collision frequency also appears to be almost proportional to the estimate for small inertial particles uniformly distributed in space, though much smaller. Concerning the turbulence modulation, we find that the mean energy dissipation increases almost linearly with ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}, leading to a large reduction of Reλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re_{\lambda }$$\end{document}.
引用
收藏
页码:413 / 430
页数:17
相关论文
共 50 条
  • [1] Settling of finite-size particles in turbulence at different volume fractions
    Fornari, Walter
    Zade, Sagar
    Brandt, Luca
    Picano, Francesco
    ACTA MECHANICA, 2019, 230 (02) : 413 - 430
  • [2] Clustering of finite-size particles in turbulence
    Fiabane, L.
    Zimmermann, R.
    Volk, R.
    Pinton, J. -F.
    Bourgoin, M.
    PHYSICAL REVIEW E, 2012, 86 (03):
  • [3] On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles
    Agathe Chouippe
    Markus Uhlmann
    Acta Mechanica, 2019, 230 : 387 - 412
  • [4] On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles
    Chouippe, Agathe
    Uhlmann, Markus
    ACTA MECHANICA, 2019, 230 (02) : 387 - 412
  • [5] Finite-size inertial spherical particles in turbulence
    Chiarini, Alessandro
    Rosti, Marco Edoardo
    JOURNAL OF FLUID MECHANICS, 2024, 988
  • [6] Dispersion of finite-size particles probing inhomogeneous and anisotropic turbulence
    Meriaux, Catherine A.
    Teixeira, Miguel A. C.
    Monaghan, Joe J.
    Cohen, Raymond
    Cleary, Paul
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2020, 84 : 93 - 109
  • [7] Turbulence modulation in channel flow of finite-size spheroidal particles
    Ardekani, M. Niazi
    Brandt, L.
    JOURNAL OF FLUID MECHANICS, 2019, 859 : 887 - 901
  • [8] Modulation of homogeneous shear turbulence laden with finite-size particles
    Tanaka, M.
    Teramoto, D.
    JOURNAL OF TURBULENCE, 2015, 16 (10): : 979 - 1010
  • [9] Parameterization of turbulence modulation by finite-size solid particles in forced homogeneous isotropic turbulence
    Peng, Cheng
    Sun, Qichao
    Wang, Lian-Ping
    JOURNAL OF FLUID MECHANICS, 2023, 963
  • [10] Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids
    Zade, Sagar
    Lundell, Fredrik
    Brandt, Luca
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2019, 112 : 116 - 129