Low regularity solution of the initial-boundary-value problem for the “good” Boussinesq equation on the half line

被引:0
作者
Ru Ying Xue
机构
[1] Zhejiang University,Department of Mathematics
来源
Acta Mathematica Sinica, English Series | 2010年 / 26卷
关键词
Boussinesq equation; existence; initial-boundary-value problem; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
we study an initial-boundary-value problem for the “good” Boussinesq equation on the half line \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{gathered} \partial _t^2 u - \partial _x^2 u + \partial _x^4 u + \partial _x^2 u^2 = 0, t > 0, x > 0, \hfill \\ u\left( {0,t} \right) = h_1 \left( t \right), \partial _x^2 u\left( {0,t} \right) = \partial _t h_2 \left( t \right), \hfill \\ u\left( {x,0} \right) = f\left( x \right), \partial _t u\left( {x,0} \right) = \partial _x h\left( x \right) \hfill \\ \end{gathered} \right. $$\end{document}. The existence and uniqueness of low reguality solution to the initial-boundary-value problem is proved when the initial-boundary data (f, h, h1, h2) belong to the product space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^s \left( {\mathbb{R}^ + } \right) \times H^{s - 1} \left( {\mathbb{R}^ + } \right) \times H^{\tfrac{s} {2} + \tfrac{1} {4}} \left( {\mathbb{R}^ + } \right) \times H^{\tfrac{s} {2} + \tfrac{1} {4}} \left( {\mathbb{R}^ + } \right) $$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0 \leqslant s \leqslant \tfrac{1} {2} $$\end{document} . The analyticity of the solution mapping between the initial-boundary-data and the solution space is also considered.
引用
收藏
页码:2421 / 2442
页数:21
相关论文
共 20 条
[1]  
Bona L.(2004)Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media II: The nonlinear theory Nonlinearity 17 925-952
[2]  
Chen M.(1988)Global existence of smooth solutions and stability theory of solitary waves for a generalized Boussinesq equation Comm. Math. Phys. 118 15-29
[3]  
Saut J. C.(1993)Global existence of small solutions for a generalized Boussinesq equation J. Diff. Eqn. 106 257-293
[4]  
Bona L.(2006)Local and global existence of solutions for the Cauchy problem of a generalized Boussinesq equation J. Math. Anal. Appl. 316 307-327
[5]  
Sachs L.(1997)Finite element Galerkin methods for the“good” Boussinesq equation Nonlinear Analysis TMA 29 937-956
[6]  
Linares F.(2000)Long-time asymptotics for the damped Boussinesq equation in a disk Electron. J. Diff. Eqn. 5 285-298
[7]  
Xue R.(1991)Oscillatory integrals and regularity of dispersive equations Indiana Univ. Math. J. 40 33-69
[8]  
Pani A. K.(1993)Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle Comm. Pure Appl. Math. 66 527-620
[9]  
Saranga H. S.(2001)A non-homogenous boundary-value problem for the Korteweg-de-Varies equation in a quarter plane Trans. Amer. Math. Soc. 326 427-490
[10]  
Varlamov V.(1995)Taylor series expension for the solutions of the KdV equation with respective to their initial values J. Funct. Anal. 129 293-324