The minimum Hamming distances of repeated-root cyclic codes of length 6ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6p^s$$\end{document} and their MDS codes

被引:0
作者
Ying Gao
Qin Yue
Fengwei Li
机构
[1] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[2] State Key Laboratory of Cryptology,School of Mathematics and Statistics
[3] Zaozhuang University,undefined
关键词
Cyclic codes; Hamming distance; Griesmer bound; Singleton bound; 94B15; 11T71;
D O I
10.1007/s12190-020-01383-y
中图分类号
学科分类号
摘要
In this paper, let p be a prime with p≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 7$$\end{document}. We determine the weight distributions of cyclic codes of length 6 over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} and the minimum Hamming distances of all repeated-root cyclic codes of length 6ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6p^s$$\end{document} over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}, where q is a power of p and s is an integer. Furthermore, we find all maximum distance separable codes of length 6ps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$6p^s$$\end{document}.
引用
收藏
页码:107 / 123
页数:16
相关论文
共 57 条
[1]  
Carlet C(2005)Linear codes from highly nonlinear functions and their secret sharing schemes IEEE Trans. Inf. Theory 51 2089-2102
[2]  
Ding C(1991)On repeated-root cyclic codes IEEE Trans. Inf. Theory 37 337-342
[3]  
Yuan J(2012)Constacyclic codes over finitefields Finite Fields Appl. 18 1217-1231
[4]  
Castagnoli G(2014)Repeated-root constacyclic codes of length Discrete Appl. Math. 177 60-70
[5]  
Massey JL(2015) and their duals Finite Fields Appl. 33 137-159
[6]  
Schoeller PA(2017)Repeated-root constacyclic codes of length IEEE Trans. Inf. Theory 62 7661-7666
[7]  
von Seemann N(1975)Constacyclic symbol-pair codes: lower bounds and optimal constructions IEEE Trans. Inf. Theory 21 575-576
[8]  
Chen B(2005)On subfield subcodes of modified Reed-Solomon codes Theor. Comput. Sci. 330 81-99
[9]  
Fan Y(2010)A coding theory construction of new systematic authentication codes IEEE Trans. Inf. Theory 56 3605-3612
[10]  
Lin L(2008)Optimal sets of frequency hopping sequences from linear cyclic codes Finite Fields Appl. 14 22-40