Morse Theory for S-balanced Configurations in the Newtonian n-body Problem

被引:0
作者
Luca Asselle
Alessandro Portaluri
机构
[1] Justus Liebig Universität Gießen,
[2] Università degli Studi di Torino,undefined
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
-body problem; Balanced configurations; Central configurations; -Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
For the Newtonian (gravitational) n-body problem in the Euclidean d-dimensional space, the simplest possible solutions are provided by those rigid motions (homographic solutions) in which each body moves along a Keplerian orbit and the configuration of the n-body is a (constant up to rotations and scalings) central configuration. For d≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 3$$\end{document}, the only possible homographic motions are those given by central configurations. For d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 4$$\end{document} instead, new possibilities arise due to the higher complexity of the orthogonal group O(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {O}(d)$$\end{document}, as observed by Albouy and Chenciner (Invent Math 131(1):151–184, 1998). For instance, in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} it is possible to rotate in two mutually orthogonal planes with different angular velocities. This produces a new balance between gravitational forces and centrifugal forces providing new periodic and quasi-periodic motions. So, for d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} there is a wider class of S-balanced configurations (containing the central ones) providing simple solutions of the n-body problem, which can be characterized as well through critical point theory. In this paper, we first provide a lower bound on the number of balanced (non-central) configurations in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, for arbitrary d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, and establish a version of the 45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45^\circ $$\end{document}-theorem for balanced configurations, thus answering some of the questions raised in Moeckel (Central configurations, 2014). Also, a careful study of the asymptotics of the coefficients of the Poincaré polynomial of the collision free configuration sphere will enable us to derive some rather unexpected qualitative consequences on the count of S-balanced configurations. In the last part of the paper, we focus on the case d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document} and provide a lower bound on the number of periodic and quasi-periodic motions of the gravitational n-body problem which improves a previous celebrated result of McCord (Ergodic Theory Dyn Syst 16:1059–1070, 1996).
引用
收藏
页码:907 / 946
页数:39
相关论文
共 50 条
[21]   Conjugate Points in the Gravitational n-Body Problem [J].
Angelo B. Mingarelli ;
Chiara M. F. Mingarelli .
Celestial Mechanics and Dynamical Astronomy, 2005, 91 :391-401
[22]   On the n-body problem in R4 [J].
Schmah, Tanya ;
Stoica, Cristina .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2158)
[23]   Some problems on the classical n-body problem [J].
Albouy, Alain ;
Cabral, Hildeberto E. ;
Santos, Alan A. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (04) :369-375
[24]   Elliptic relative equilibria in the N-body problem [J].
Meyer, KR ;
Schmidt, DS .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (02) :256-298
[25]   SAARI'S CONJECTURE FOR ELLIPTICAL MOTIONS AND MINIMIZING SOLUTIONS OF THE N-BODY PROBLEM [J].
Yu, Xiang ;
Zhang, Shiqing .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (01) :709-724
[26]   Quantum N-body problem: Matrix structures and equations [J].
S. L. Yakovlev .
Theoretical and Mathematical Physics, 2014, 181 :1317-1338
[27]   Jacobi Dynamics And The N-Body Problem With Variable Masses [J].
C. M. Giordano ;
A. R. Plastino .
Celestial Mechanics and Dynamical Astronomy, 1999, 75 :165-183
[29]   Bifurcations of balanced configurations for the Newtonian n-body problem in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} [J].
Luca Asselle ;
Marco Fenucci ;
Alessandro Portaluri .
Journal of Fixed Point Theory and Applications, 2022, 24 (2)
[30]   Action-minimizing solutions of the one-dimensional N-body problem [J].
Xiang Yu ;
Shiqing Zhang .
Celestial Mechanics and Dynamical Astronomy, 2018, 130