Morse Theory for S-balanced Configurations in the Newtonian n-body Problem

被引:0
|
作者
Luca Asselle
Alessandro Portaluri
机构
[1] Justus Liebig Universität Gießen,
[2] Università degli Studi di Torino,undefined
来源
Journal of Dynamics and Differential Equations | 2023年 / 35卷
关键词
-body problem; Balanced configurations; Central configurations; -Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
For the Newtonian (gravitational) n-body problem in the Euclidean d-dimensional space, the simplest possible solutions are provided by those rigid motions (homographic solutions) in which each body moves along a Keplerian orbit and the configuration of the n-body is a (constant up to rotations and scalings) central configuration. For d≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 3$$\end{document}, the only possible homographic motions are those given by central configurations. For d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 4$$\end{document} instead, new possibilities arise due to the higher complexity of the orthogonal group O(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {O}(d)$$\end{document}, as observed by Albouy and Chenciner (Invent Math 131(1):151–184, 1998). For instance, in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} it is possible to rotate in two mutually orthogonal planes with different angular velocities. This produces a new balance between gravitational forces and centrifugal forces providing new periodic and quasi-periodic motions. So, for d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document} there is a wider class of S-balanced configurations (containing the central ones) providing simple solutions of the n-body problem, which can be characterized as well through critical point theory. In this paper, we first provide a lower bound on the number of balanced (non-central) configurations in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}, for arbitrary d≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 4$$\end{document}, and establish a version of the 45∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$45^\circ $$\end{document}-theorem for balanced configurations, thus answering some of the questions raised in Moeckel (Central configurations, 2014). Also, a careful study of the asymptotics of the coefficients of the Poincaré polynomial of the collision free configuration sphere will enable us to derive some rather unexpected qualitative consequences on the count of S-balanced configurations. In the last part of the paper, we focus on the case d=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=4$$\end{document} and provide a lower bound on the number of periodic and quasi-periodic motions of the gravitational n-body problem which improves a previous celebrated result of McCord (Ergodic Theory Dyn Syst 16:1059–1070, 1996).
引用
收藏
页码:907 / 946
页数:39
相关论文
共 50 条
  • [1] Morse Theory for S-balanced Configurations in the Newtonian n-body Problem
    Asselle, Luca
    Portaluri, Alessandro
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2023, 35 (01) : 907 - 946
  • [2] Bifurcations of balanced configurations for the Newtonian n-body problem in R4
    Asselle, Luca
    Fenucci, Marco
    Portaluri, Alessandro
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (02)
  • [3] Morse Theory and Central Configurations in the Spatial N-body Problem
    John Conrad Merkel
    Journal of Dynamics and Differential Equations, 2008, 20 : 653 - 668
  • [4] Central Configurations of the Curved N-Body Problem
    Florin Diacu
    Cristina Stoica
    Shuqiang Zhu
    Journal of Nonlinear Science, 2018, 28 : 1999 - 2046
  • [5] Central Configurations of the Curved N-Body Problem
    Diacu, Florin
    Stoica, Cristina
    Zhu, Shuqiang
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1999 - 2046
  • [6] Convex central configurations for the n-body problem
    Xia, ZH
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) : 185 - 190
  • [7] Central Configurations, Super Central Configurations, and Beyond in the n-Body Problem
    Xie, Zhifu
    BRIDGING MATHEMATICS, STATISTICS, ENGINEERING AND TECHNOLOGY, 2012, 24 : 1 - 8
  • [8] Continua of central configurations with a negative mass in the n-body problem
    Hachmeister, Julian
    Little, John
    McGhee, Jasmine
    Pelayo, Roberto
    Sasarita, Spencer
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2013, 115 (04) : 427 - 438
  • [9] Convex Central Configurations of the n-Body Problem Which are not Strictly Convex
    Kuo-Chang Chen
    Jun-Shian Hsiao
    Journal of Dynamics and Differential Equations, 2012, 24 : 119 - 128
  • [10] On Centered Co-circular Central Configurations of the n-Body Problem
    Montserrat Corbera
    Claudia Valls
    Journal of Dynamics and Differential Equations, 2019, 31 : 2053 - 2060