Development of an Operational Hybrid Data Assimilation System at KIAPS

被引:0
|
作者
In-Hyuk Kwon
Hyo-Jong Song
Ji-Hyun Ha
Hyoung-Wook Chun
Jeon-Ho Kang
Sihye Lee
Sujeong Lim
Youngsoon Jo
Hyun-Jun Han
Hanbyeol Jeong
Hui-Nae Kwon
Seoleun Shin
Tae-Hun Kim
机构
[1] Korea Institute of Atmospheric Prediction Systems (KIAPS),
[2] Korea Institute of Atmospheric Prediction Systems,undefined
来源
Asia-Pacific Journal of Atmospheric Sciences | 2018年 / 54卷
关键词
Numerical weather prediction; operational data assimilation; ensemble-variational hybridization; satellite observation assimilation; coupling strategy for hybrid systems;
D O I
暂无
中图分类号
学科分类号
摘要
This study introduces the operational data assimilation (DA) system at the Korea Institute of Atmospheric Prediction Systems (KIAPS) to the numerical weather prediction community. Its development history and performance are addressed with experimental illustrations and the authors’ previously published studies. Milestones in skill improvements include the initial operational implementation of three-dimensional variational data assimilation (3DVar), the ingestion of additional satellite observations, and changing the DA scheme to a hybrid four-dimensional ensemble-variational DA using forecasts from an ensemble based on the local ensemble transform Kalman filter (LETKF). In the hybrid system, determining the relative contribution of the ensemble-based covariance to the resultant analysis is crucial, particularly for moisture variables including a variety of horizontal scale spectra. Modifications to the humidity control variable, partial rather than full recentering of the ensemble for humidity further improves moisture analysis, and the inclusion of more radiance observations with higher-level peaking channels have significant impacts on stratosphere temperature and wind performance. Recent update of the operational hybrid DA system relative to the previous 3DVar system is described for detailed improvements with interpretation.
引用
收藏
页码:319 / 335
页数:16
相关论文
共 50 条
  • [11] Advancing data assimilation in operational hydrologic forecasting: progresses, challenges, and emerging opportunities
    Liu, Y.
    Weerts, A. H.
    Clark, M.
    Franssen, H-J Hendricks
    Kumar, S.
    Moradkhani, H.
    Seo, D-J
    Schwanenberg, D.
    Smith, P.
    van Dijk, A. I. J. M.
    van Velzen, N.
    He, M.
    Lee, H.
    Noh, S. J.
    Rakovec, O.
    Restrepo, P.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (10) : 3863 - 3887
  • [12] Impact of MSMR data on NCMRWF Global Data Assimilation System
    S. R. H. Rizvi
    Rupa Kamineni
    U. C. Mohanty
    Meteorology and Atmospheric Physics, 2002, 81 : 257 - 272
  • [13] The effect of improved ensemble covariances on hybrid variational data assimilation
    Bowler, N. E.
    Clayton, A. M.
    Jardak, M.
    Jermey, P. M.
    Lorenc, A. C.
    Wlasak, M. A.
    Barker, D. M.
    Inverarity, G. W.
    Swinbank, R.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2017, 143 (703) : 785 - 797
  • [14] Development of Convective-Scale Static Background Error Covariance within GSI-Based Hybrid EnVar System for Direct Radar Reflectivity Data Assimilation
    Wang, Yongming
    Wang, Xuguang
    MONTHLY WEATHER REVIEW, 2021, 149 (08) : 2713 - 2736
  • [15] Dynamically weighted hybrid gain data assimilation: perfect model testing
    De Azevedo, Helena Barbieri
    De Goncalves, Luis Gustavo Goncalves
    Kalnay, Eugenia
    Wespetal, Matthew
    TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2020, 72 (01) : 1 - 11
  • [16] Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres
    Gustafsson, Nils
    Janjic, Tijana
    Schraff, Christoph
    Leuenberger, Daniel
    Weissmann, Martin
    Reich, Hendrik
    Brousseau, Pierre
    Montmerle, Thibaut
    Wattrelot, Eric
    Bucanek, Antonin
    Mile, Mate
    Hamdi, Rafiq
    Lindskog, Magnus
    Barkmeijer, Jan
    Dahlbom, Mats
    Macpherson, Bruce
    Ballard, Sue
    Inverarity, Gordon
    Carley, Jacob
    Alexander, Curtis
    Dowell, David
    Liu, Shun
    Ikuta, Yasutaka
    Fujita, Tadashi
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (713) : 1218 - 1256
  • [17] The Irreplaceable Utility of Sequential Data Assimilation for Numerical Weather Prediction System Development: Lessons Learned from an Experimental HWRF System
    Poterjoy, Jonathan
    Alaka, Ghassan J., Jr.
    Winterbottom, Henry R.
    WEATHER AND FORECASTING, 2021, 36 (02) : 661 - 677
  • [18] Assimilation of AMSU-A/B radiances with the NRL atmospheric variational data assimilation system (NAVDAS)
    Baker, NL
    Blankenship, CB
    Campbell, WF
    Swadley, SD
    Hogan, TF
    Barker, EH
    APPLICATIONS WITH WEATHER SATELLITES II, 2005, 5658 : 154 - 165
  • [19] Error model for the assimilation of cloud-affected infrared satellite observations in an ensemble data assimilation system
    Harnisch, F.
    Weissmann, M.
    Perianez, A.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (697) : 1797 - 1808
  • [20] Assimilation of Coyote Small Uncrewed Aircraft System Observations in Hurricane Maria (2017) Using Operational HWRF
    Sellwood, Kathryn J.
    Sippel, Jason A.
    Aksoy, Altug
    WEATHER AND FORECASTING, 2023, 38 (06) : 901 - 919