Drivers of energy efficiency for manufacturing SMEs in Eurasian countries: a profiling analysis using machine learning techniques

被引:0
|
作者
Fatih Cemil Ozbugday
Onder Ozgur
Derya Findik
机构
[1] Ankara Yildirim Beyazit University,Department of Economics, Dumlupinar Mah
[2] Ankara Yildirim Beyazit University,Department of Management Information Systems, Dumlupinar Mah
来源
Energy Efficiency | 2022年 / 15卷
关键词
Energy efficiency; Eurasian economies; Machine learning; Small and medium-sized enterprises; Manufacturing sector;
D O I
暂无
中图分类号
学科分类号
摘要
This study profiles manufacturing small and medium-sized enterprises (SMEs) in Eurasian countries regarding their practices of energy efficiency investments and energy management techniques. Given that the energy efficiency gap could be larger for SMEs because of the barriers identified in the related literature, the profiling of SMEs regarding their energy efficiency practices could help design specific policies that could be adopted for SMEs with a higher likelihood of insufficient energy efficiency investments. Advanced machine learning techniques, such as the random forest algorithm, enable us to perform such profiling. In profiling SMEs, the article uses the group enterprise survey collected by the European Bank for Reconstruction and Development-European Investment Bank-World Bank. The results of the random forest algorithm suggest that the most important input variable to identify the firm behavior to make an effort to enhance energy efficiency or adopt any energy management method is the sector of the firm, followed by firm size, number of skilled workers, the expertise of the top manager, and the firm’s experience. Contrary to the main findings in the literature, the firm’s ownership structure is the least important factor in forecasting its energy efficiency efforts. The elements of a clean energy strategy do not matter for efforts to enhance the energy efficiency, either. These results suggest that if policymakers in Eurasia were to design policies for manufacturing SMEs to make them invest more in energy efficiency, they should address smaller, younger enterprises with relatively less human capital when giving public subsidies.
引用
收藏
相关论文
共 50 条
  • [41] Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques
    Gallo, Steven M.
    White, Joseph P.
    DeLeon, Robert L.
    Furlani, Thomas R.
    Ngo, Helen
    Patra, Abani K.
    Jones, Matthew D.
    Palmer, Jeffrey T.
    Simakov, Nikolay
    Sperhac, Jeanette M.
    Innus, Martins
    Yearke, Thomas
    Rathsam, Ryan
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 642 - 649
  • [42] Predictive Analysis of Cervical Cancer Using Machine Learning Techniques
    Kumawat, Gaurav
    Vishwakarma, Santosh Kumar
    Chakrabarti, Prasun
    SMART TRENDS IN COMPUTING AND COMMUNICATIONS, VOL 1, SMARTCOM 2024, 2024, 945 : 501 - 516
  • [43] Analysis of Judiciary Expenditure and Productivity Using Machine Learning Techniques
    Vasconcelos, Fernando Freire
    Satiro, Renato Maximo
    Favero, Luiz Paulo Lopes
    Bortoloto, Gabriela Troyano
    Correa, Hamilton Luiz
    MATHEMATICS, 2023, 11 (14)
  • [44] Calling communities analysis and identification using machine learning techniques
    Kianmehr, Keivan
    Alhajj, Reda
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (03) : 6218 - 6226
  • [45] Spatial Analysis of Tumor Heterogeneity Using Machine Learning Techniques
    Mitra, Chancharik
    Yoo, Jin Young
    Madak-Erdogan, Zeynep
    Soliman, Aiman
    2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 781 - 786
  • [46] An Analysis of Software Bug Reports Using Machine Learning Techniques
    Tran H.M.
    Le S.T.
    Nguyen S.V.
    Ho P.T.
    SN Computer Science, 2020, 1 (1)
  • [47] Prediction and Analysis of Customer Complaints Using Machine Learning Techniques
    Alarifi, Ghadah
    Rahman, Mst Farjana
    Hossain, Md Shamim
    INTERNATIONAL JOURNAL OF E-BUSINESS RESEARCH, 2023, 19 (01)
  • [48] FAULT ANALYSIS OF SHIP MACHINERY USING MACHINE LEARNING TECHNIQUES
    Ak, A.
    Inceisci, F. Kaya
    INTERNATIONAL JOURNAL OF MARITIME ENGINEERING, 2022, 164 (1 A): : A69 - A80
  • [49] Software Defect Prediction Analysis Using Machine Learning Techniques
    Khalid, Aimen
    Badshah, Gran
    Ayub, Nasir
    Shiraz, Muhammad
    Ghouse, Mohamed
    SUSTAINABILITY, 2023, 15 (06)
  • [50] Improving energy efficiency in manufacturing using peer benchmarking to influence machine design innovation
    Phil Sheppard
    Shahin Rahimifard
    Clean Technologies and Environmental Policy, 2019, 21 : 1213 - 1235