Drivers of energy efficiency for manufacturing SMEs in Eurasian countries: a profiling analysis using machine learning techniques

被引:0
|
作者
Fatih Cemil Ozbugday
Onder Ozgur
Derya Findik
机构
[1] Ankara Yildirim Beyazit University,Department of Economics, Dumlupinar Mah
[2] Ankara Yildirim Beyazit University,Department of Management Information Systems, Dumlupinar Mah
来源
Energy Efficiency | 2022年 / 15卷
关键词
Energy efficiency; Eurasian economies; Machine learning; Small and medium-sized enterprises; Manufacturing sector;
D O I
暂无
中图分类号
学科分类号
摘要
This study profiles manufacturing small and medium-sized enterprises (SMEs) in Eurasian countries regarding their practices of energy efficiency investments and energy management techniques. Given that the energy efficiency gap could be larger for SMEs because of the barriers identified in the related literature, the profiling of SMEs regarding their energy efficiency practices could help design specific policies that could be adopted for SMEs with a higher likelihood of insufficient energy efficiency investments. Advanced machine learning techniques, such as the random forest algorithm, enable us to perform such profiling. In profiling SMEs, the article uses the group enterprise survey collected by the European Bank for Reconstruction and Development-European Investment Bank-World Bank. The results of the random forest algorithm suggest that the most important input variable to identify the firm behavior to make an effort to enhance energy efficiency or adopt any energy management method is the sector of the firm, followed by firm size, number of skilled workers, the expertise of the top manager, and the firm’s experience. Contrary to the main findings in the literature, the firm’s ownership structure is the least important factor in forecasting its energy efficiency efforts. The elements of a clean energy strategy do not matter for efforts to enhance the energy efficiency, either. These results suggest that if policymakers in Eurasia were to design policies for manufacturing SMEs to make them invest more in energy efficiency, they should address smaller, younger enterprises with relatively less human capital when giving public subsidies.
引用
收藏
相关论文
共 50 条
  • [31] Improving energy efficiency of carbon fiber manufacturing through waste heat recovery: A circular economy approach with machine learning
    Khayyam, Hamid
    Naebe, Minoo
    Milani, Abbas S.
    Fakhrhoseini, Seyed Mousa
    Date, Abhijit
    Shabani, Bahman
    Atkiss, Steve
    Ramakrishna, Seeram
    Fox, Bronwyn
    Jazar, Reza N.
    ENERGY, 2021, 225 (225)
  • [32] Solar Energy Forecasting With Performance Optimization Using Machine Learning Techniques
    Murugesan, S.
    Mahasree, M.
    Kavin, F.
    Bharathiraja, N.
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024,
  • [33] A Novel Traffic Prediction Method Using Machine Learning for Energy Efficiency in Service Provider Networks
    Rau, Francisco
    Soto, Ismael
    Zabala-Blanco, David
    Azurdia-Meza, Cesar
    Ijaz, Muhammad
    Ekpo, Sunday
    Gutierrez, Sebastian
    SENSORS, 2023, 23 (11)
  • [34] Comparison of machine learning algorithms for evaluating building energy efficiency using big data analytics
    Egwim, Christian Nnaemeka
    Alaka, Hafiz
    Egunjobi, Oluwapelumi Oluwaseun
    Gomes, Alvaro
    Mporas, Iosif
    JOURNAL OF ENGINEERING DESIGN AND TECHNOLOGY, 2024, 22 (04) : 1325 - 1350
  • [35] Scientific Text Sentiment Analysis using Machine Learning Techniques
    Raza, Hassan
    Faizan, M.
    Hamza, Ahsan
    Mushtaq, Ahmed
    Akhtar, Naeem
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (12) : 157 - 165
  • [36] Sentiment Analysis using Machine Learning Techniques on Python']Python
    Rathee, Nisha
    Joshi, Nikita
    Kaur, Jaspreet
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 779 - 785
  • [37] Sentiment analysis of malayalam tweets using machine learning techniques
    Soumya, S.
    Pramod, K., V
    ICT EXPRESS, 2020, 6 (04): : 300 - 305
  • [38] A SURVEY ON ANALYSIS OF GENETIC DISEASES USING MACHINE LEARNING TECHNIQUES
    Dhanalaxmi, B.
    Anirudh, K.
    Nikhitha, G.
    Jyothi, R.
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 496 - 501
  • [39] Sentiment Analysis using Various Machine Learning Techniques: A Review
    Yadav P.
    Kathuria M.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (02) : 79 - 84
  • [40] Comparative study on sentimental analysis using machine learning techniques
    Enduri, Murali Krishna
    Sangi, Abdur Rashid
    Anamalamudi, Satish
    Manikanta, R. Chandu Badrinath
    Reddy, K. Yogeshvar
    Yeswanth, P. Lovely
    Reddy, S. Kiran Sai
    Karthikeya, Asish
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (01) : 207 - 215