On growth of varieties of commutative linear algebras

被引:0
|
作者
Mishchenko S.S. [1 ]
机构
[1] Faculty of Mathematics and Information Technologies, Ulyanovsk State University
基金
俄罗斯基础研究基金会;
关键词
Variety Versus; Associative Algebra; Free Algebra; Double Inequality; Intermediate Growth;
D O I
10.1007/s10958-009-9710-x
中图分类号
学科分类号
摘要
There exists varieties of commutative linear algebras over a field of zero characteristic whose exponent is equal to α for any real α > 1 and the intermediate growth is nnβ for any real 0 < β < 1. © 2009 Springer Science+Business Media, Inc.
引用
收藏
页码:739 / 742
页数:3
相关论文
共 50 条
  • [41] Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth
    Mishchenko S.P.
    Cherevatenko O.I.
    Journal of Mathematical Sciences, 2008, 152 (2) : 282 - 287
  • [42] Restricted Lie algebras with subexponential growth
    Riley, David
    Usefi, Hamid
    GROUPS, RINGS AND ALGEBRAS, 2006, 420 : 289 - +
  • [43] Codimension Growth of Algebras with Adjoint Unit
    Bezushchak O.E.
    Beljaev A.A.
    Zaicev M.V.
    Journal of Mathematical Sciences, 2015, 206 (5) : 462 - 473
  • [44] On growth of almost polynilpotent Lie algebras
    Klementyev, S. G.
    Petrogradsky, V. M.
    GROUPS, RINGS AND GROUP RINGS, 2009, 499 : 173 - 180
  • [45] Algebras and semigroups of locally subexponential growth
    Alahmadi, Adel
    Alsulami, Hamed
    Jain, S. K.
    Zelmanov, Efim
    JOURNAL OF ALGEBRA, 2018, 503 : 56 - 66
  • [46] Algorithmic solvability of the word problem for some varieties of linear quasigroups
    Tabarov A.K.
    Journal of Mathematical Sciences, 2011, 177 (6) : 930 - 936
  • [47] On the growth of deformations of algebras associated with Coxeter graphs
    Popova N.D.
    Samoilenko Yu.S.
    Strilets' O.V.
    Ukrainian Mathematical Journal, 2007, 59 (6) : 907 - 918
  • [48] GROWTH OF FINITELY GENERATED SIMPLE LIE ALGEBRAS
    Greenfeld, Be'eri
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (02) : 607 - 618
  • [49] Asymptotic growth of codimensions of identities of associative algebras
    Giambruno A.
    Zaicev M.V.
    Moscow University Mathematics Bulletin, 2014, 69 (3) : 125 - 127
  • [50] FIRST ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS IN ASSOCIATIVE ALGEBRAS
    Erlebacher, Gordon
    Sobczyk, Garret E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,