Singular Vectors of the Ding-Iohara-Miki Algebra

被引:0
作者
Y. Ohkubo
机构
[1] The University of Tokyo,Graduate School of Mathematical Sciences
来源
Theoretical and Mathematical Physics | 2019年 / 199卷
关键词
AGT correspondence; Macdonald symmetric function; Ding-Iohara-Miki algebra; singular vector;
D O I
暂无
中图分类号
学科分类号
摘要
We review properties of generalized Macdonald functions arising from the AGT correspondence. In particular, we explain a coincidence between generalized Macdonald functions and singular vectors of a certain algebra A(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}(N)$\end{document} obtained using the level-(N, 0) representation (horizontal representation) of the Ding-Iohara-Miki algebra. Moreover, we give a factored formula for the Kac determinant of A(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}(N)$\end{document}, which proves the conjecture that the Poincaré-Birkhoff-Witt-type vectors of the algebra A(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal A}(N)$\end{document} form a basis in its representation space.
引用
收藏
页码:475 / 500
页数:25
相关论文
共 166 条
[1]  
Ding J(1997)Generalization of Drinfeld quantum affine algebras Lett. Math. Phys. 41 181-193
[2]  
Iohara K(2007)A ( J. Math. Phys. 48 123520-1231
[3]  
Miki K(2012)) analog of the Duke Math. J. 161 1171-364
[4]  
Burban I(2009) algebra J. Math. Phys. 50 095215-392
[5]  
Schiffmann O(2011)On the Hall algebra of an elliptic curve: I Kyoto J. Math. 51 337-659
[6]  
Feigin B(2011)A commutative algebra on degenerate ℂℙ Kyoto J. Math. 51 365-152
[7]  
Hashizume K(2012) and Macdonald polynomials Kyoto J. Math. 52 621-854
[8]  
Hoshino A(2010)Quantum continuous gl RIMS Kokyuroku 1689 133-197
[9]  
Shiraishi J(2011): Semiinfinite construction of representations Kyoto J. Math. 51 831-64
[10]  
Yanagida S(2016)Quantum continuous gl Progr. Theor. Exper. Phys. 2016 123B05-262