Stability Analysis of Several Time Discrete Schemes for Allen–Cahn and Cahn–Hilliard Equations

被引:0
|
作者
Qiaoling He
Junping Yan
Abudurexiti Abuduwaili
机构
[1] College of Science,
[2] Shihezi University,undefined
[3] College of Mathematics and System Science,undefined
[4] Xinjiang University,undefined
来源
Computational Mathematics and Mathematical Physics | 2023年 / 63卷
关键词
Allen–Cahn equation; Cahn–Hilliard equation; mixed finite element methods; error estimates; stability analysis; positive definite operator;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1773 / 1786
页数:13
相关论文
共 50 条
  • [21] ASYMPTOTICALLY COMPATIBLE FOURIER SPECTRAL APPROXIMATIONS OF NONLOCAL ALLEN-CAHN EQUATIONS
    Du, Qiang
    Yang, Jiang
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1899 - 1919
  • [22] A NUMERICAL ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS
    Cherfils, Laurence
    Petcu, Madalina
    Pierre, Morgan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (04) : 1511 - 1533
  • [23] Quantifying and eliminating the time delay in stabilization exponential time differencing Runge-Kutta schemes for the Allen-Cahn equation
    Zhang, Hong
    Liu, Lele
    Qian, Xu
    Song, Songhe
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (01) : 191 - 221
  • [24] Stability and convergence of a second-order mixed finite element method for the Cahn-Hilliard equation
    Diegel, Amanda E.
    Wang, Cheng
    Wise, Steven M.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1867 - 1897
  • [25] Numerical analysis of finite element method for time-fractional Cahn-Hilliard-Cook equation
    Wang, Xiaolei
    Wang, Bo
    Zou, Guang-an
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) : 2825 - 2841
  • [26] Postprocessing Mixed Finite Element Methods For Solving Cahn–Hilliard Equation: Methods and Error Analysis
    Wansheng Wang
    Long Chen
    Jie Zhou
    Journal of Scientific Computing, 2016, 67 : 724 - 746
  • [27] On a Class of Higher-Order Fully Decoupled Schemes for the Cahn-Hilliard-Navier-Stokes System
    Li, Xiaoli
    Liu, Zhengguang
    Shen, Jie
    Zheng, Nan
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [28] WHY LARGE TIME-STEPPING METHODS FOR THE CAHN-HILLIARD EQUATION IS STABLE
    Li, Dong
    MATHEMATICS OF COMPUTATION, 2022, 91 (338) : 2501 - 2515
  • [29] On a SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase-field model and its error analysis for the corresponding Cahn-Hilliard-Stokes case
    Li, Xiaoli
    Shen, Jie
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (12): : 2263 - 2297
  • [30] Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition
    Feng, Xiaobing
    Karakashian, Ohannes A.
    MATHEMATICS OF COMPUTATION, 2007, 76 (259) : 1093 - 1117