Unmixedness and arithmetic properties of matroidal ideals

被引:0
作者
Hero Saremi
Amir Mafi
机构
[1] Islamic Azad University,Department of Mathematics, Sanandaj Branch
[2] University of Kurdistan,Department of Mathematics
来源
Archiv der Mathematik | 2020年 / 114卷
关键词
Arithmetical rank; Unmixed ideals; Matroidal ideals; 13C40; 13F20; 13C13;
D O I
暂无
中图分类号
学科分类号
摘要
Let R=k[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=k[x_1,\ldots ,x_n]$$\end{document} be the polynomial ring in n variables over a field k and let I be a matroidal ideal of degree d. In this paper, we study the unmixedness properties and the arithmetical rank of I. Moreover, we show that ara(I)=n-d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ara(I)=n-d+1$$\end{document}. This answers the conjecture made by Chiang-Hsieh (Comm Algebra 38:944–952, 2010, Conjecture).
引用
收藏
页码:299 / 304
页数:5
相关论文
共 21 条
  • [1] Bandari S(2013)Monomial localizations and polymatroidal ideals Eur. J. Comb. 34 752-763
  • [2] Herzog J(2016)On certain equidimensional polymatroidal ideals Manuscr. Math. 149 223-233
  • [3] Bandari S(1996)On the number of equations defining certain varieties Manuscr. Math. 91 483-494
  • [4] Jafari R(2006)A note on monomial ideals Arch. Math. 87 516-521
  • [5] Barile M(2010)Some arithmetic properties of matroidal ideals Comm. Algebra 38 944-952
  • [6] Barile M(2003)Castelnuovo-Mumford regularity of products of ideals Collect. Math. 54 137-152
  • [7] Chiang-Hsieh HJ(2006)Cohen–Macaulay polymatroidal ideals Eur. J. Comb. 27 513-517
  • [8] Conca A(2002)Discrete polymatroids J. Algebraic Comb. 16 239-268
  • [9] Herzog J(2009)Arithmetical rank of square-free monomial ideals of small arithmetic degree J. Algebraic Comb. 29 389-404
  • [10] Herzog J(1979)Note on set-theoretic intersections of subvarieties of projective space Math. Ann. 245 247-253