Center cyclicity of a family of quartic polynomial differential system

被引:0
|
作者
Isaac A. García
Jaume Llibre
Susanna Maza
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Differential Equations and Applications NoDEA | 2016年 / 23卷
关键词
Center; polynomial vector fields; Bautin ideal; cyclicity; limit cycle; 37G15; 37G10; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the cyclicity of the centers of the quartic polynomial family written in complex notation as z˙=iz+zz¯(Az2+Bzz¯+Cz¯2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{z} = i z + z \bar{z}\big(A z^2 + B z \bar{z} + C \bar{z}^2 \big),$$\end{document}where A,B,C∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A,B,C \in \mathbb{C}}$$\end{document}. We give an upper bound for the cyclicity of any nonlinear center at the origin when we perturb it inside this family. Moreover we prove that this upper bound is sharp.
引用
收藏
相关论文
共 50 条
  • [41] Absolute cyclicity, Lyapunov quantities and center conditions
    Caubergh, M.
    Gasull, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 366 (01) : 297 - 309
  • [42] The center and cyclicity problems for some analytic maps
    Mencinger, Matej
    Fercec, Brigita
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 : 73 - 85
  • [43] CYCLICITY OF UNBOUNDED SEMI-HYPERBOLIC 2-SADDLE CYCLES IN POLYNOMIAL LIENARD SYSTEMS
    Caubergh, Magdalena
    Dumortier, Freddy
    Luca, Stijn
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) : 963 - 980
  • [44] Bifurcation of limit cycles for a quartic near-Hamiltonian system by perturbing a nilpotent center
    Jiang, Jiao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 376 - 384
  • [45] Bifurcation of Limit Cycles from the Center of a Family of Cubic Polynomial Vector Fields
    Sui, Shiyou
    Zhao, Liqin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (05):
  • [46] Local cyclicity and criticality in FF-type piecewise smooth cubic and quartic Kukles systems
    Huang, Wentao
    He, Dongping
    Cai, Junning
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 67
  • [47] Center problem and the bifurcation of limit cycles for a cubic polynomial system
    Du, Chaoxiong
    Huang, Wentao
    Zhang, Qi
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (17) : 5200 - 5215
  • [48] Non algebraic limit cycles for family of autonomous polynomial planar differential systems
    Bendjeddou, A.
    Kina, A.
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2019, 51 (10): : 57 - 63
  • [49] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Llibre, Jaume
    Mousavi, Marzieh
    Nabavi, Arefeh
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2019, 25 (04) : 619 - 630
  • [50] New Family of Centers of Planar Polynomial Differential Systems of Arbitrary Even Degree
    Jaume Llibre
    Marzieh Mousavi
    Arefeh Nabavi
    Journal of Dynamical and Control Systems, 2019, 25 : 619 - 630