Center cyclicity of a family of quartic polynomial differential system

被引:0
|
作者
Isaac A. García
Jaume Llibre
Susanna Maza
机构
[1] Universitat de Lleida,Departament de Matemàtica
[2] Universitat Autònoma de Barcelona,Departament de Matemàtiques
来源
Nonlinear Differential Equations and Applications NoDEA | 2016年 / 23卷
关键词
Center; polynomial vector fields; Bautin ideal; cyclicity; limit cycle; 37G15; 37G10; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the cyclicity of the centers of the quartic polynomial family written in complex notation as z˙=iz+zz¯(Az2+Bzz¯+Cz¯2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{z} = i z + z \bar{z}\big(A z^2 + B z \bar{z} + C \bar{z}^2 \big),$$\end{document}where A,B,C∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${A,B,C \in \mathbb{C}}$$\end{document}. We give an upper bound for the cyclicity of any nonlinear center at the origin when we perturb it inside this family. Moreover we prove that this upper bound is sharp.
引用
收藏
相关论文
共 50 条
  • [31] BI-CENTER PROBLEM AND HOPF CYCLICITY OF A CUBIC LIENARD SYSTEM
    Hu, Min
    Li, Tao
    Chen, Xingwu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (01): : 401 - 414
  • [32] Center cyclicity for some nilpotent singularities including the Z2-equivariant class
    Garcia, Isaac A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [33] On the number of limit cycles of a perturbed cubic polynomial differential center
    Li, Shimin
    Zhao, Yulin
    Li, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 404 (02) : 212 - 220
  • [34] The cyclicity of the period annulus of a quadratic reversible system with one center of genus one
    Peng, Linping
    Sun, Yannan
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (04) : 667 - 685
  • [35] Center and focus problem and Hopf bifurcation for planar polynomial systems
    Han, Maoan
    LET'S FACE CHAOS THROUGH NONLINEAR DYNAMICS, 2012, 1468 : 176 - 192
  • [36] Quasi-homogeneous polynomial differential systems having a center at the origin
    Xiong, Yanqin
    Lu, Shiping
    APPLIED MATHEMATICS LETTERS, 2020, 103 (103)
  • [37] On the center criterion of planar quasi-homogeneous polynomial differential systems
    Zhang, Liwei
    Yu, Jiang
    BULLETIN DES SCIENCES MATHEMATIQUES, 2018, 147 : 7 - 25
  • [38] LIMIT CYCLES FOR PIECEWISE SMOOTH PERTURBATIONS OF A CUBIC POLYNOMIAL DIFFERENTIAL CENTER
    Li, Shimin
    Huang, Tiren
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [39] The cyclicity of a cubic system with nonradical Bautin ideal
    Levandovskyy, Viktor
    Romanovski, Valery G.
    Shafer, Douglas S.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) : 1274 - 1287
  • [40] ON A FAMILY OF POLYNOMIAL DIFFERENTIAL EQUATIONS HAVING AT MOST THREE LIMIT CYCLES
    Gasull, Armengol
    Zhao, Yulin
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (01): : 191 - 203