Sphere Bundles Transverse to Holomorphic Vector Fields

被引:0
作者
C. Morales
A. Soares
机构
[1] Universidade Federal do Rio de Janeiro,Instituto de Matemática
[2] Centro Federal de Educação Tecnológica Celso Suckow da Fonseca,Departamento de Matemática
来源
Journal of Dynamical and Control Systems | 2014年 / 20卷
关键词
3-manifolds; Holomorphic foliation; Holomorphic vector field; 37F75 (Primary); 32M25 (Secondary);
D O I
暂无
中图分类号
学科分类号
摘要
We prove that for every pair of nonzero complex numbers λ1 and λ2 with λ1λ2∉ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac {\lambda _{1}}{\lambda _{2}}\not \in \mathbb {R}$\end{document} there is an embedding S2×S1→ℂ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S^{2}\times S^{1}\rightarrow \mathbb {C}^{2}$\end{document} transverse to the linear holomorphic vector field Z(x,y)=λ1x∂∂x+λ2y∂∂y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Z(x,y)=\lambda _{1}x\frac {\partial }{\partial x}+\lambda _{2} y\frac {\partial }{\partial y}$\end{document}. This extends a previous result by Ito (1989).
引用
收藏
页码:419 / 430
页数:11
相关论文
共 11 条
[1]  
Bedford E(1978)Domains with pseudoconvex neighborhood systems Invent Math. 47 1-27
[2]  
Fornaess JE(1994)Une remarque sur les champs de vecteurs holomorphes transverses au bord d’;un domaine convexe. (French. English, French summary) [A remark on holomorphic vector fields transverse to the boundary of a convex domain] C R Acad Sci Paris Sér. I Math. 319 1253-5
[3]  
Brunella M(1986)Nonsingular holomorphic flows Topology. 25 471-3
[4]  
Crew R(1994)A Poincare-Bendixson type theorem for holomorphic vector fields, Singularities of holomorphic vector fields and related topics (Japanese) (Kyoto, 1993) Sūrikaisekikenkyūsho Kōkyūroku. 878 1-9
[5]  
Fried D(1996)The number of compact leaves of a one-dimensional foliation on the (2n−1)-dimensionalsphere S2n−1 associated with a holomorphic vector field, Topology of holomorphic dynamical systems and related topics (Japanese) (Kyoto, 1995) Sūrikaisekikenkyūsho Kōkyūroku. 955 75-9
[6]  
Ito T(2005)On holomorphic foliations transverse to spheres Mosc Math J. 5 379-97
[7]  
Ito T(2009)Holomorphic foliations transverse to manifolds with corners Discret Contin Dyn Syst. 25 537-44
[8]  
Ito T(undefined)undefined undefined undefined undefined-undefined
[9]  
Scárdua B(undefined)undefined undefined undefined undefined-undefined
[10]  
Ito T(undefined)undefined undefined undefined undefined-undefined