Quantum information processing and quantum optics with circuit quantum electrodynamics

被引:0
|
作者
Alexandre Blais
Steven M. Girvin
William D. Oliver
机构
[1] Institut quantique,Department of Physics
[2] Université de Sherbrooke,Yale Quantum Institute
[3] Département de Physique,Department of Electrical Engineering and Computer Science
[4] Université de Sherbrooke,Department of Physics
[5] Canadian Institute for Advanced Research,undefined
[6] Yale University,undefined
[7] Yale University,undefined
[8] Massachusetts Institute of Technology,undefined
[9] Massachusetts Institute of Technology,undefined
[10] MIT Lincoln Laboratory,undefined
来源
Nature Physics | 2020年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Since the first observation of coherent quantum behaviour in a superconducting qubit, now more than 20 years ago, there have been substantial developments in the field of superconducting quantum circuits. One such advance is the introduction of the concepts of cavity quantum electrodynamics (QED) to superconducting circuits, to yield what is now known as circuit QED. This approach realizes in a single architecture the essential requirements for quantum computation, and has already been used to run simple quantum algorithms and to operate tens of superconducting qubits simultaneously. For these reasons, circuit QED is one of the leading architectures for quantum computation. In parallel to these advances towards quantum information processing, circuit QED offers new opportunities for the exploration of the rich physics of quantum optics in novel parameter regimes in which strongly nonlinear effects are readily visible at the level of individual microwave photons. We review circuit QED in the context of quantum information processing and quantum optics, and discuss some of the challenges on the road towards scalable quantum computation.
引用
收藏
页码:247 / 256
页数:9
相关论文
共 50 条
  • [31] Quantum information enabled by quantum optics
    Kimble, HJ
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 77 - 82
  • [32] Quantum information processing with fiber optics: Quantum Fourier transform of 1024 qubits
    A. Tomita
    Optics and Spectroscopy, 2005, 99 : 204 - 210
  • [33] Quantum information processing with fiber optics: Quantum Fourier transform of 1024 qubits
    Tomita, A
    OPTICS AND SPECTROSCOPY, 2005, 99 (02) : 204 - 210
  • [34] Publisher Correction: Random access quantum information processors using multimode circuit quantum electrodynamics
    R. K. Naik
    N. Leung
    S. Chakram
    Peter Groszkowski
    Y. Lu
    N. Earnest
    D. C. McKay
    Jens Koch
    D. I. Schuster
    Nature Communications, 9
  • [35] Universal quantum gate with hybrid qubits in circuit quantum electrodynamics
    Yang, Chui-Ping
    Zheng, Zhen-Fei
    Zhang, Yu
    OPTICS LETTERS, 2018, 43 (23) : 5765 - 5768
  • [36] Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics
    Salathe, Y.
    Mondal, M.
    Oppliger, M.
    Heinsoo, J.
    Kurpiers, P.
    Potocnik, A.
    Mezzacapo, A.
    Heras, U. Las
    Lamata, L.
    Solano, E.
    Filipp, S.
    Wallraff, A.
    PHYSICAL REVIEW X, 2015, 5 (02):
  • [37] Convergence of the multimode quantum Rabi model of circuit quantum electrodynamics
    Gely, Mario F.
    Parra-Rodriguez, Adrian
    Bothner, Daniel
    Blanter, Ya. M.
    Bosman, Sal J.
    Solano, Enrique
    Steele, Gary A.
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [38] One-way quantum computation with circuit quantum electrodynamics
    Wu, Chun-Wang
    Han, Yang
    Zhong, Xiao-Jun
    Chen, Ping-Xing
    Li, Cheng-Zu
    PHYSICAL REVIEW A, 2010, 81 (03):
  • [39] Electron quantum optics as quantum signal processing
    Roussel, B.
    Cabart, C.
    Feve, G.
    Thibierge, E.
    Degiovanni, P.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (03):
  • [40] Quantum optics as enabling for quantum information science
    Kimble, HJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 1 - 6