Quantum information processing and quantum optics with circuit quantum electrodynamics

被引:0
|
作者
Alexandre Blais
Steven M. Girvin
William D. Oliver
机构
[1] Institut quantique,Department of Physics
[2] Université de Sherbrooke,Yale Quantum Institute
[3] Département de Physique,Department of Electrical Engineering and Computer Science
[4] Université de Sherbrooke,Department of Physics
[5] Canadian Institute for Advanced Research,undefined
[6] Yale University,undefined
[7] Yale University,undefined
[8] Massachusetts Institute of Technology,undefined
[9] Massachusetts Institute of Technology,undefined
[10] MIT Lincoln Laboratory,undefined
来源
Nature Physics | 2020年 / 16卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Since the first observation of coherent quantum behaviour in a superconducting qubit, now more than 20 years ago, there have been substantial developments in the field of superconducting quantum circuits. One such advance is the introduction of the concepts of cavity quantum electrodynamics (QED) to superconducting circuits, to yield what is now known as circuit QED. This approach realizes in a single architecture the essential requirements for quantum computation, and has already been used to run simple quantum algorithms and to operate tens of superconducting qubits simultaneously. For these reasons, circuit QED is one of the leading architectures for quantum computation. In parallel to these advances towards quantum information processing, circuit QED offers new opportunities for the exploration of the rich physics of quantum optics in novel parameter regimes in which strongly nonlinear effects are readily visible at the level of individual microwave photons. We review circuit QED in the context of quantum information processing and quantum optics, and discuss some of the challenges on the road towards scalable quantum computation.
引用
收藏
页码:247 / 256
页数:9
相关论文
共 50 条
  • [21] Quantum Optics as Applied Quantum Electrodynamics is Back in Town
    Stammer, P.
    Lewenstein, M.
    ACTA PHYSICA POLONICA A, 2023, 143 (06) : S42 - S51
  • [22] Towards hybrid circuit quantum electrodynamics with quantum dots
    Viennot, Jeremie J.
    Delbecq, Matthieu R.
    Bruhat, Laure E.
    Dartiailh, Matthieu C.
    Desjardins, Matthieu M.
    Baillergeau, Matthieu
    Cottet, Audrey
    Kontos, Takis
    COMPTES RENDUS PHYSIQUE, 2016, 17 (07) : 705 - 717
  • [23] Observing quantum synchronization blockade in circuit quantum electrodynamics
    Nigg, Simon E.
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [24] Universal Quantum Cloning Machine in Circuit Quantum Electrodynamics
    Lv Dan-Dan
    Lu Hong
    Yu Ya-Fei
    Feng Xun-Li
    Zhang Zhi-Ming
    CHINESE PHYSICS LETTERS, 2010, 27 (02)
  • [25] Circuit quantum electrodynamics with a superconducting quantum point contact
    Romero, G.
    Lizuain, I.
    Shumeiko, V. S.
    Solano, E.
    Bergeret, F. S.
    PHYSICAL REVIEW B, 2012, 85 (18):
  • [26] Dynamic quantum Kerr effect in circuit quantum electrodynamics
    Yin, Yi
    Wang, H.
    Mariantoni, M.
    Bialczak, Radoslaw C.
    Barends, R.
    Chen, Y.
    Lenander, M.
    Lucero, Erik
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Weides, M.
    Wenner, J.
    Yamamoto, T.
    Zhao, J.
    Cleland, A. N.
    Martinis, John M.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [27] Quasiperiodic circuit quantum electrodynamics
    T. Herrig
    J. H. Pixley
    E. J. König
    R.-P. Riwar
    npj Quantum Information, 9
  • [28] Quasiperiodic circuit quantum electrodynamics
    Herrig, T.
    Pixley, J. H.
    Koenig, E. J.
    Riwar, R. -p.
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [29] Quantum optics and quantum information technologies
    Killin, S. Ya.
    OPTICS AND SPECTROSCOPY, 2007, 103 (01) : 1 - 6
  • [30] Quantum optics and quantum information technologies
    S. Ya. Kilin
    Optics and Spectroscopy, 2007, 103 : 1 - 6