Packing Convex Bodies by Cylinders

被引:0
作者
Károly Bezdek
Alexander E. Litvak
机构
[1] University of Calgary,Department of Mathematics and Statistics
[2] University of Alberta,Department of Mathematical and Statistical Sciences
来源
Discrete & Computational Geometry | 2016年 / 55卷
关键词
Convex body; Banach–Mazur distance; Bang’s problem; Volume ratio; Packing by cylinders; Covering by cylinders; Non-separable arrangement; NS-domain; NS-family; Primary: 52A40; 46B07; Secondary: 46B20; 52C17;
D O I
暂无
中图分类号
学科分类号
摘要
In Bezdek and Litvak (J Geom Anal 19:233–243, 2009) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d-dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of r-fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96, 1980).
引用
收藏
页码:725 / 738
页数:13
相关论文
共 11 条
[1]  
Ball K(1991)The plank problem for symmetric bodies Invent. Math. 104 535-543
[2]  
Bang T(1951)A solution of the “plank problem” Proc. Am. Math. Soc. 2 990-993
[3]  
Bezdek K(2009)Covering convex bodies by cylinders and lattice points by flats J. Geom. Anal. 19 233-243
[4]  
Litvak AE(1967)Inequalities for the difference body of a convex body Proc. Am. Math. Soc. 18 879-884
[5]  
Chakerian GD(1980)Function space topologies defined by sectional integrals and applications to an extremal problem Math. Proc. Camb. Philos. Soc. 87 81-96
[6]  
Falconer KJ(1945)A circle covering theorem Am. Math. Mon. 52 494-498
[7]  
Goodman AW(1947)Nonseparable convex systems Am. Math. Mon. 54 583-585
[8]  
Goodman RE(1958)Convex bodies associated with a given convex body J. Lond. Math. Soc. 33 270-281
[9]  
Hadwiger H(undefined)undefined undefined undefined undefined-undefined
[10]  
Rogers CA(undefined)undefined undefined undefined undefined-undefined