On the Hamiltonian Hopf bifurcations in the 3D Hénon-Heiles family

被引:15
|
作者
Hanßmann H. [1 ,2 ]
Van Der Meer J.-C. [3 ]
机构
[1] Program for Applied and Computational Mathematics, Princeton University, Princeton, NJ
[2] Institut für Reine und Angewandte Mathematik, RWTH Aachen, Aachen
[3] Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, 5600 MB, Eindhoven
关键词
Bifurcation; Hamiltonian Hopf bifurcation; Hamiltonian system; Hénon-Heiles family; Normal form; Reduction; Relative equilibria; Transversality conditions;
D O I
10.1023/A:1016343317119
中图分类号
学科分类号
摘要
An axially symmetric perturbed isotropic harmonic oscillator undergoes several bifurcations as the parameter λ adjusting the relative strength of the two terms in the cubic potential is varied. We show that three of these bifurcations are Hamiltonian Hopf bifurcations. To this end we analyse an appropriately chosen normal form. It turns out that the linear behaviour is not that of a typical Hamiltonian Hopf bifurcation as the eigen-values completely vanish at the bifurcation. However, the nonlinear structure is that of a Hamiltonian Hopf bifurcation. The result is obtained by formulating geometric criteria involving the normalized Hamiltonian and the reduced phase space. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:675 / 695
页数:20
相关论文
共 50 条
  • [1] Periodic trajectories near degenerate equilibria in the Hénon-Heiles and Yang-Mills Hamiltonian systems
    Maciejewski A.
    Radzki W.
    Rybicki S.
    Journal of Dynamics and Differential Equations, 2005, 17 (3) : 475 - 488
  • [2] Nondegenerate Hamiltonian Hopf Bifurcations in ω: 3: 6 Resonance (ω=1 or 2)
    Mazrooei-Sebdani, Reza
    Hakimi, Elham
    REGULAR & CHAOTIC DYNAMICS, 2020, 25 (06): : 522 - 536
  • [3] Intravascular Ultrasound and 3D Angle Measurements of Coronary Bifurcations
    van der Waal, Eva C.
    Mintz, Gary S.
    Garcia-Garcia, Hector M.
    Bui, Anh B.
    Pehlivanova, Marieta
    Girasis, Chrysafios
    Serruys, Patrick W.
    van der Giessen, Wim J.
    Weissman, Neil J.
    CATHETERIZATION AND CARDIOVASCULAR INTERVENTIONS, 2009, 73 (07) : 910 - 916
  • [4] Poisson Algebras and 3D Superintegrable Hamiltonian Systems
    Fordy, Allan P.
    Huang, Qing
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [5] Stability and bifurcations for a 3D Filippov SEIS model with limited medical resources
    Dong, Cunjuan
    Zhang, Long
    Teng, Zhidong
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2024, 2024 (01):
  • [6] 3D reconstruction techniques of human coronary bifurcations for shear stress computations
    Gijsen, Frank J. H.
    Schuurbiers, Johan C. H.
    van de Giessen, Alina G.
    Schaap, Michiel
    van der Steen, Anton F. W.
    Wentzel, Jolanda J.
    JOURNAL OF BIOMECHANICS, 2014, 47 (01) : 39 - 43
  • [7] Bifurcations from a center at infinity in 3D piecewise linear systems with two zones
    Freire, Emilio
    Ordonez, Manuel
    Ponce, Enrique
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 402
  • [8] 3D Generating Surfaces in Hamiltonian Systems with Three Degrees of Freedom - II
    Katsanikas, Matthaios
    Wiggins, Stephen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (02):
  • [9] On the Birth of Discrete Lorenz Attractors Under Bifurcations of 3D Maps with Nontransversal Heteroclinic Cycles
    Ivan I. Ovsyannikov
    Regular and Chaotic Dynamics, 2022, 27 : 217 - 231
  • [10] Birth of discrete Lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points
    Sergey V. Gonchenko
    Ivan I. Ovsyannikov
    Joan C. Tatjer
    Regular and Chaotic Dynamics, 2014, 19 : 495 - 505