Limit Cycles for a Discontinuous Quintic Polynomial Differential System

被引:0
作者
Bo Huang
机构
[1] Beihang University,LMIB
[2] New York University,School of Mathematics and Systems Science
来源
Qualitative Theory of Dynamical Systems | 2019年 / 18卷
关键词
Averaging method; Center; Discontinuous quintic system; Limit cycle; Period annulus; 34C05; 34C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the maximum number of limit cycles for a discontinuous quintic differential system. Using the first-order averaging method, we explain how limit cycles can bifurcate from the period annulus around the center of the considered system when it is perturbed inside a class of discontinuous quintic polynomial differential systems. Our results show that the lower bound and the upper bound of the number of limit cycles, 8 and 10 respectively, that can bifurcate from the period annulus around the center.
引用
收藏
页码:769 / 792
页数:23
相关论文
共 54 条
[21]  
Gavrilov L(2017)On extended Chebyshev systems with positive accuracy J. Math. Anal. Appl. 448 171-254
[22]  
Gavrilov L(2015)Bifurcation of limit cycles from a quintic center via the second order averaging method Int. J. Bifur. Chaos 25 1550047-1–18-undefined
[23]  
Iliev ID(1991)Mechanical manipulation for a class of differential systems J. Symb. Comput. 12 233-undefined
[24]  
Gautier S(undefined)undefined undefined undefined undefined-undefined
[25]  
Gavrilov L(undefined)undefined undefined undefined undefined-undefined
[26]  
Iliev ID(undefined)undefined undefined undefined undefined-undefined
[27]  
Huang B(undefined)undefined undefined undefined undefined-undefined
[28]  
Ilyashenko Y(undefined)undefined undefined undefined undefined-undefined
[29]  
Itikawa J(undefined)undefined undefined undefined undefined-undefined
[30]  
Llibre J(undefined)undefined undefined undefined undefined-undefined