Non-weighted Asynchronous H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Filtering for Continuous-Time Switched Fuzzy Systems

被引:0
作者
Can Liu
Yang Li
Qunxian Zheng
Hongbin Zhang
机构
[1] University of Electronic Science and Technology of China,School of Information and Communication Engineering
[2] Anhui Polytechnic University,School of Electrical Engineering
关键词
Non-weighted asynchronous ; filtering; Continuous-time switched nonlinear systems; Takagi–Sugeno (T-S) fuzzy models; Time-scheduled fuzzy multiple Lyapunov function (TSFMLF);
D O I
10.1007/s40815-020-00873-2
中图分类号
学科分类号
摘要
This paper focuses on the non-weighted asynchronous H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} filtering problem for a class of continuous-time switched nonlinear systems. The nonlinearities of subsystems are described by Takagi–Sugeno (T-S) fuzzy models. Using the information of switching instants, the filters are designed to be time-scheduled and separately in the asynchronous and synchronous time intervals. Based on a new time-scheduled fuzzy multiple Lyapunov function (TSFMLF), sufficient conditions are achieved to guarantee the switched filtering error system is globally asymptotically stable with a non-weighted H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} performance. Finally, an example is presented to demonstrated the effectiveness of the theoretical results.
引用
收藏
页码:1892 / 1904
页数:12
相关论文
共 35 条
[31]   Delay decomposition approach to H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_{\infty }$$\end{document} filtering analysis of genetic oscillator networks with time-varying delays [J].
V. M. Revathi ;
P. Balasubramaniam .
Cognitive Neurodynamics, 2016, 10 (2) :135-147
[33]   Quasi-Time-Dependent H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}_\infty $$\end{document} Filtering of Discrete-Time 2-D Switched Systems with Mode-Dependent Persistent Dwell-Time [J].
Yougao Fan ;
Mao Wang ;
Hao Fu ;
Bin Zhang ;
Yuchuan Bian ;
Guanghui Sun .
Circuits, Systems, and Signal Processing, 2021, 40 (12) :5886-5912
[34]   H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\infty }$$\end{document} Filtering for Markov Jump Neural Networks Subject to Hidden-Markov Mode Observation and Packet Dropouts via an Improved Activation Function Dividing Method [J].
Feng Li ;
Jianrong Zhao ;
Shuai Song ;
Xia Huang ;
Hao Shen .
Neural Processing Letters, 2020, 51 (2) :1939-1955
[35]   A Novel L2-L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_2-L_\infty $$\end{document} Filtering Strategy for Two Kinds of Network-Based Linear Time-Invariant Systems [J].
Baolong Zhu ;
Jie Ma ;
Shunli Li .
Circuits, Systems, and Signal Processing, 2017, 36 (8) :3098-3113