Linear Complementarity Problems over Symmetric Cones: Characterization of Qb-transformations and Existence Results

被引:0
作者
Julio López
Rúben López
Héctor C. Ramírez
机构
[1] Universidad Técnica Federico Santa María,Departamento de Matemática
[2] Universidad Católica de la Santísima Concepción,Departamento de Matemática y Física Aplicadas
[3] Universidad de Chile,Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807), FCFM
来源
Journal of Optimization Theory and Applications | 2013年 / 159卷
关键词
Euclidean Jordan algebra; Linear complementarity problem; Symmetric cone; -transformation; -transformation; García’s transformation;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to the study of the symmetric cone linear complementarity problem (SCLCP). Specifically, our aim is to characterize the class of linear transformations for which the SCLCP has always a nonempty and bounded solution set in terms of larger classes. For this, we introduce a couple of new classes of linear transformations in this SCLCP context. Then, we study them for concrete particular instances (such as second-order and semidefinite linear complementarity problems) and for specific examples (Lyapunov, Stein functions, among others). This naturally permits to establish coercive and noncoercive existence results for SCLCPs.
引用
收藏
页码:741 / 768
页数:27
相关论文
共 50 条
  • [41] An Extension of Sums of Squares Relaxations to Polynomial Optimization Problems Over Symmetric Cones
    Masakazu Kojima
    Masakazu Muramatsu
    Mathematical Programming, 2007, 110 : 315 - 336
  • [42] EXTENSION OF SMOOTHING NEWTON ALGORITHMS TO SOLVE LINEAR PROGRAMMING OVER SYMMETRIC CONES
    Huang, Zhenghai
    Liu, Xiaohong
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2011, 24 (01) : 195 - 206
  • [43] An infeasible full-NT step IPM for P*(κ) horizontal linear complementarity problem over Cartesian product of symmetric cones
    Asadi, S.
    Mansouri, H.
    Darvay, Zs.
    OPTIMIZATION, 2017, 66 (02) : 225 - 250
  • [44] Infeasible Mehrotra-type predictor-corrector algorithm for cartesian P*(κ) nonlinear complementarity problems over symmetric cones
    Zhao, Huali
    Liu, Hongwei
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 457 - 473
  • [45] A Mehrotra-type second-order predictor-corrector algorithm for nonlinear complementarity problems over symmetric cones
    Zhao, Huali
    Yang, Jun
    OPTIMIZATION, 2024, 73 (01) : 189 - 204
  • [46] A New Infeasible-Interior-Point Algorithm for Linear Programming over Symmetric Cones
    Chang-he LIU
    You-lin SHANG
    Ping HAN
    Acta Mathematicae Applicatae Sinica, 2017, 33 (03) : 771 - 788
  • [47] A new infeasible-interior-point algorithm for linear programming over symmetric cones
    Liu, Chang-he
    Shang, You-lin
    Han, Ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (03): : 771 - 788
  • [48] A new infeasible-interior-point algorithm for linear programming over symmetric cones
    Chang-he Liu
    You-lin Shang
    Ping Han
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 771 - 788
  • [49] A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones
    Masakazu Kojima
    Masakazu Muramatsu
    Computational Optimization and Applications, 2009, 42 : 31 - 41
  • [50] A note on sparse SOS and SDP relaxations for polynomial optimization problems over symmetric cones
    Kojima, Masakazu
    Muramatsu, Masakazu
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 42 (01) : 31 - 41