Approximation of infinitely differentiable periodic functions by interpolation trigonometric polynomials

被引:0
作者
A. S. Serdyuk
机构
[1] Ukrainian Academy of Sciences,Institute of Mathematics
关键词
Periodic Function; Differentiable Function; Trigonometric Polynomial; Fixed Generate; Asymptotic Equality;
D O I
10.1007/s11253-005-0006-0
中图分类号
学科分类号
摘要
We establish asymptotically unimprovable interpolation analogs of Lebesgue-type inequalities on the classes of periodic infinitely differentiable functions CΨβC whose elements can be represented in the form of convolutions with fixed generating kernels. We obtain asymptotic equalities for upper bounds of approximations by interpolation trigonometric polynomials on the classes CΨβ,∞ and CΨβHω.
引用
收藏
页码:601 / 613
页数:12
相关论文
共 6 条
[1]  
Stepanets A. I.(2000)Approximation of trigonometric functions by interpolation trigonometric polynomials Ukr. Mat. Zh. 52 1689-1701
[2]  
Serdyuk A. S.(1989)On the Lebesgue inequality on classes of (Ψ, β)-differentiable functions Ukr. Mat. Zh. 41 499-510
[3]  
Stepanets A. I.(1997)Rate of convergence of Fourier series on classes of Ukr. Mat. Zh. 49 1069-1113
[4]  
Stepanets A. I.(1941)-integrals Dokl. Akad. Nauk SSSR 31 215-218
[5]  
Nikol’skii S. M.(1999)Asymptotic estimate for the remainder in the case of approximation by interpolation trigonometric polynomials Dopov. Akad. Nauk Ukr. 8 29-33
[6]  
Serdyuk A. S.(undefined)On asymptotically exact estimates for the error of approximation of functions of high smoothness by interpolation trigonometric polynomials undefined undefined undefined-undefined