A cubic system with a limit cycle bounded by two invariant parabolas

被引:1
|
作者
Sáez E. [1 ]
Szántó I. [1 ]
机构
[1] Departamento de Matemática, Universidad Técnica Federico Santa María, Valparaíso
关键词
Center; Invariant algebraic curves; Limit cycles; Polynomial differential equations;
D O I
10.1007/s12591-009-0012-z
中图分类号
学科分类号
摘要
We show the existence of a cubic system having at least one limit cycle bounded by two invariant parabolas. We will also obtain the necessary and sufficient conditions for the critical point in the interior of the bounded region to be a center. © 2009 Foundation for Scientific Research and Technological Innovation.
引用
收藏
页码:163 / 168
页数:5
相关论文
共 50 条
  • [1] Uniqueness of limit cycles bounded by two invariant parabolas
    Saez, Eduardo
    Szanto, Ivan
    APPLICATIONS OF MATHEMATICS, 2012, 57 (05) : 521 - 529
  • [2] Uniqueness of limit cycles bounded by two invariant parabolas
    Eduardo Sáez
    Iván Szántó
    Applications of Mathematics, 2012, 57 : 521 - 529
  • [3] LIMIT CYCLES AND INVARIANT PARABOLAS FOR AN EXTENDED KUKLES SYSTEM
    Szabo, Bela
    Szanto, Ivan
    MISKOLC MATHEMATICAL NOTES, 2014, 15 (01) : 219 - 225
  • [4] A cubic system with an invariant triangle surrounding at least one limit cycle
    Liu, ZH
    Sáez, E
    Szántó, I
    TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (02): : 275 - 281
  • [5] Integrability conditions for a cubic differential system with two invariant straight lines and one invariant cubic
    Dascalescu, Anatoli
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2018, 45 (02): : 312 - 322
  • [6] On the cubic Kukles systems with an algebraic limit cycle of degree two
    Jin, Yuye
    Zhao, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 526 (01)
  • [7] Darboux integrability of a cubic differential system with two parallel invariant straight lines
    Cozma, Dumitru
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (01) : 129 - 137
  • [8] Limit cycles of a cubic Kolmogorov system
    Lloyd, NG
    Pearson, JM
    Saez, E
    Szanto, I
    APPLIED MATHEMATICS LETTERS, 1996, 9 (01) : 15 - 18
  • [9] A cubic system with thirteen limit cycles
    Li, Chengzhi
    Liu, Changjian
    Yang, Jiazhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (09) : 3609 - 3619
  • [10] Existence of limit cycles for real quadratic differential systems with an invariant cubic
    Chavarriga, J
    García, IA
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 223 (02) : 201 - 218